
Real Time Turbo Decoding of BCH Product Code
on the DSP Texas TMS320C6201

André GOALIC(*) and Nadine CHAPALAIN(**)
(*)ENST de Bretagne, Technopôle Brest-Iroise BP-832, 29285 BREST, BRITTANY

(**)Mitsubishi Electric ITE, Im. Germanium 80, av. des Buttes de Coësmes 35700 RENNES
E-mail : andre.goalic@enst-bretagne.fr

Abstract – To speed up and enhance real
time DSP application developments, a new kind of
tool called “Code Composer Studio (CCS)” can be
used, in the Texas Instrument DSP environment. It
allows an easy check of real time “Block Turbo
Code (BTC)” behaviour. The studio also includes
the new DSP analysis technology, the Real-Time
Data Exchange (RTDX). Thus the encoder
implemented on the host computer exchanges data
with the decoder implemented on the DSP board via
the RTDX link. Once sent back to the host the
decoded data allows analysis and curves drawing.
This paper also presents our first results concerning
the implementation of the “Block Turbo Code (BTC)
“ on the Texas Instruments TMS320C6201 (1600
MIPS) fixed point DSP. After four iterations our
implementation can reach – 400 kbits/s – in C and
– 550 kbits/s – in Assembly language.

Keywords : Block-turbo-code, TMS320C6201, real-
time-processing, RTDX.

I.INTRODUCTION

Channel coding is one of the main part of a
digital communication system. The use of
redundancy bits helps the decoder to restitute the
emitted sequence. Flexibility and adaptability are
easily obtained by an implementation on a DSP chip.

While using product codes based for example on
a BCH(32,26,4) scheme, the coding gain at 10-5 Bit
Error Rate slightly exceeds 6 dB[1]. Before the
coding process, the information bits are stored in a
matrix. The BTC coder then, adds redundancy bits to
rows and columns, the sets of rows and columns
remaining codewords. An iterative process is used to
decode the product code. Section II describes the
decoding algorithm. Section III presents the
demonstration platform using the Code Composer
Studio (CCS) and the RTDX link. Then we will
approach, in section IV, the problems of real-time
decoder implementation. Section V will show some
promising results, obtained using C and Assembly
language. Finally, conclusion and future perspectives
of the real time TCB implementation on a DSP chip
are given.

II. SOFT DECODING OF BTC

II.1. The product code

Let us consider a linear block code C
having parameters (n, k, δ) where n, k, δ stand for
code word length, number of information bits and
minimum Hamming distance respectively. The code
rate is defined by the ratio r = k/n. The product code
P = C ⊗ C is then obtained by :

- placing (k × k) information bits in an array of k
rows and k columns.

- coding k rows and n columns using code C.
The parameters of the resulting product code P are
given by : N = n × n, K = k × k, ∆ = δ × δ, and the
code rate : R = r × r. The (n-k) last rows and the (n-
k) last columns also are code words of C. A soft
decision algorithm derived from the theoretical Log-
Likelihood-Ratio (LLR), proposed by R. Pyndiah in
1993 is used to compute the extrinsic information.

II.2. The soft decision algorithm

Let R = (r1,…,ri,…,rn) be the output of the
coherent demodulator, E = (e1,…,ei,…,en) the
transmitted code word and N =(n1,…,ni,…,nn) a
noisy Additive White Gaussian vector of standard
deviation σ. Then the receive vector R = E + N. The
decoded optimum sequence is given by :

D = C
i
if Pr{ E = C

i
|R }> Pr{ E = C

j
|R }, ∀ j ≠ I (1)

where Ci = (c1
i,…, cl

i, …, cn
i) is the ith C code word

and D = (d1,…,dl,…,dn) the decision. For noisy
samples, the decoding rule is simplified into :

D = C
i

if |R - Ci|
2

< |R – Cj|2, ∀ j ≠ i (2)

The optimum decoding process includes important
computation time, incompatible with high bit rate
real time implementations. The Chase algorithm
allows to reduce the computational time with small
performance degradation, it only looks after the code
word at Hamming distance within a sphere of radius
(δ - 1), centred on Y = (y1,…,yl,…,yn) the hard
decoded vector of R. To further reduce the number

of reviewed code words, only the most probable
code words within the sphere are selected by using
channel information. This search procedure can be
decomposed in three steps :
step 1 : determine the position of the 3 least reliable

binary symbols of Y using R.
step 2 : form 8 test sequences T

q
defined as all the

combination of sequences with "0" or "1" in
the m least reliable positions.

step 3 : decode Zq = Y ⊕ T
q

using an algebraic
decoder. It determines 8 code words Cq, one
of them, the candidate will be chosen by soft
decision and a second one, the concurrent,
will be used for weighting.

III. CODE COMPOSER STUDIO-
RTDX LINK

Designed for the TI high performance DSP
TMS320C6xxx, Code Composer Studio tightly
integrates the capabilities of :
- real-time data exchange between host and target
- real-time analysis and data visualization.
The demonstration platform (fig. 1) includes two
parts :
- the first part is implemented in the host computer,
generation of the matrix of information bits, coding
rows and columns and sending the noisy samples to
the decoder via the RTDX link. This part also
includes BER computation before drawing curves.
- the second part is implemented in the DSP, it is the
decoding process. Each noisy frame is decoded
before sending back the matrix to the host via the
RTDX link, then statistics can be made.

fig. 1 : Demonstration platform

VI. COMPUTATION

The Turbo Decoder (TD) is fed by a block of
1024 samples quantizied on 8 bits. The TD itself
includes four main tasks, each one having to be
processed on each row and column at each iteration :
- computation of decision vector Y using the received
samples R and checking its parity, looking for and
ordering the m least reliable binary symbols.

- computation of vector Z
q

syndromes using an
algebraic decoder. This decoder uses a precomputed
double input table dedicated to the BCH(32,26,4)
code. According to vectors Z

q
bit values, the decoder

checks the wrong bit positions, if the input vector is
not a code word. After possible correction C

q

belongs to the code words set.
- computation of the Euclidian distances between
code words { C

q
} and vector R. The code word with

the maximum value becomes the selected one and
the nearest will become the “concurrent”. In this real
time implementation, we only compute one
“concurrent”.
- computation of the extrinsic information bits.

IV.1 Syndrome computation

The algebraic decoder uses the double
inputs table SYND[S][j] to check the possible wrong
bit for the BCH(32,26,4) code. The words Z

q
are 31

bit length words, zj q is the value of the jth bit of the
word Zq. Let us recall the wrong bit checking
procedure :

for j = 0,..,30 if zj q = 1 then S = SYND[S][j].
The last value of S indicates the wrong bit

position if S is less than 31. The procedure has to be
repeated for each word Zq, q = 0,…, 2

m
-1. Ordered

according to their position in the word (I0, I1, I2) (fig.
2), they allow an efficient and fast method to
compute in a single loop the syndromes.

I2I0

010

100

110

111

011

001

000

I1

101

fig. 2 : Syndromes tree scheme

The new procedure implemented in real time
environment can be summarised as follows (yj is the
value of the ith bit of the word Y) :
- for j = 0,.., I0-1 if yj = 1 then S = SYND[S][j]
of course, this value S is the same for the all the
words Z

q
.

- j = I0 : if yj = 1 then S0 = SYND[S][j] , S1 = S

else S1 = SYND[S][j] , S0 = S

S1 is the updated value of the set { Z
q

}q=0,…,3 and S0

the updated value of the set { Z
q
}q=4,…,7.

- for j = I0 + 1,., I1-1if yj = 1 then S1 = SYND[S1][j]
,

S0= SYND[S0][j] .
At I1, I2 bit positions, nodes are added to the tree
allowing computation of S111, S110, S101, S100, S011,
S010, S001, S000. The set {Slmn}l,m,n∈ {0,1} corresponds to
the wrong bit positions into code words {Cq}q=0,…,7,
if Slmn < 31.

IV.2. Euclidian distance

To update the selected code word Cd bits
reliability, the decoder needs to compute the
extrinsic information after each elementary decoding
process. The Chase algorithm generates 8 code
words Cq. The distance between vector R and code
word Cq can be expressed as follows :

() ∑−∑

 −=−=

==

n

l

q
ll

n

l

q
ll

qq crcrCRM
11

222
2 (4)

For all code words Cq, the first term has the same
value. Code word Cd at minimum distance from R,

also sets at its maximum value the term ∑
=

n

l

q
ll cr

1
.

The code words {Cq}only have a few different bits.
If we consider the set of bits B, including the m least
reliable bits and the set of bits corresponding to the
syndromes : B = { I0 , I1 , I2, {Slmn}l,m,n∈ {0,1}}, the

following term ∑
∉=

n

Bll

q
ll cr

1,
takes the same value for

each code word of the set {Cq}. Thus, in a real time
environment it has not to be computed. The real time
algorithm perform the following steps :
- using syndrome computation strategy, we begin to
calculate the m least reliable bits contributions to the
sum for each code word according to chosen value.
- for each code word we compute the contribution
corresponding to the syndrome.
The code word at minimum Euclidian distance from
R is then chosen as Cd. We also look after one
“concurrent” Cc to update the bits soft decision.

IV.3. Soft decision

Once the code word Cd found, the decoder
only looks after one “concurrent” code word Cc, at
the distance minimum from Cd. The value rj’ can be
expressed as follows :

d
j

n

l

c
ll

n

l

d
llj ccrcrr

∑−∑=
== 11

'

2

1
(5)

then for all bits such as cj
d ≠ cj

c the soft decision of
the bit rj takes the following value :

j
d
j

n

l

c
ll

n

l

d
llj rccrcrw −

−= ∑∑

== 11
2

1
(6)

otherwise, for cj
d = cj

c, wj = βcj
d where β is a

constant function of the BER and optimized by
simulation.

On receiving the matrix [R] corresponding
to a transmitted code word [E] of the product code,
the decoder decodes the rows (or columns) of the
matrix, estimates the LLR and gives the output [W].
The decoding procedure described above is then
iterated. We can illustrate the procedure as follow
(fig 3) .

W(k+1)W(k)

α(k)

R(k)

R

R

R
Delay

Decoding
&updating

β(k)

fig 3 : principle of an iteration

k: the iteration number, W: the extrinsic
information, α: the weighting parameter, β: the
parameter function of the BER, optimized by
simulation. R(k) is expressed as follows : R(k) = R +
α(k)W(k).

Extrinsic information updating depends on
the two code words, Cd and Cc , found at step 3 :

×

≠
= ∑

≠=

lseβ

if
,1

ec

ccpcr
w

d
j

c
j

d
j

n

jll
l

d
ll

j (7)

where :

≠
==

c
l

d
l

c
l

d
l

l
cc

cc
p

if1

if0
(8)

V. IMPLEMENTATION

V.1 Development and Test Environment

Hardware and software environment, used for the
Turbo Decoder implementation consist of the

evaluation module TMS320C6201 EVM provided
by Texas Instruments. The software environment
includes all the tools required for benchmarking.
Two series of test have been conducted on the
station, the first in C and the second in Assembly
language.

V.2 C language experimentation

The C language program under test only
includes the four tasks stated before. It is optimised
with the help of the TI C Compiler that takes
advantage of the CPU architectural features. All
parameters are quantizied on 8 bits (char), 16 bits
(short) and 32 bits (int).

One way to reduce the number of
instructions is to keep when it’s possible the
parameters in the CPU. Thus, local parameters can
stay in the CPU registers decreasing the number of
access memory. In this implementation, the variables
that are used during the four tasks are declared as
global variables and the ones that are needed only
for one task are defined as local variables. Thus, the
number of frame reaches 582 per second, that is to
say close to 400 Kbits/s.

V.2 Assembly language experimentation

To improve decoder performances the C
functions are rewritten in Assembly language, the
DSP environment remaining the same. For our
application all the C functions have been rewritten in
Assembly language.

Table 2 shows the decrease of the number
of cycles when using Assembly language.

The new bit rate in assembly language is
close to 550 Kbits/s. It appears clearly that the first
task, which includes sort operations, requires soft
pipelining to be optimized.

VI. CONCLUSIONS-PERSPECTIVES

This paper has presented the implementation
of a Turbo decoder in C and Assembly language, on
the DSP TMS320C6201 (1600 Mips version).
Regarding the bit rate reached after 4 iterations – 400
kbits/s (C language) and 550 kbits/s (Assembly) –,
those results are very promising and shows that
acceptable performance can be achieved with C code
without the development effort required with hand-
written assembly code. However the Assembly
language allows to use efficiently the computation
power. This first version makes an important use of

parallelism but poorly exploit the high capacity of the
software pipelining. The portability of the C code on
new TI chips will allow to highly increase the bit rates
with only a little development investment.

Number of cycles
(functions)TASKS

C language Assembly
Updating Input
Hard decoding

427

Hard decoding 324
Syndrome computation 220-324 212
Euclidian distance
Candidate selection

220
96

134

Soft decision 260 135
Main task 60
Main task
Updating Input

140

Total 1338 968
Table 2 : Comparison C and Assembly language

Acknowledgement : The authors would like to thank
TEXAS INSTRUMENT European ‘ELITE Program’
to have made this project possible while providing the
DSP development environment

REFERENCES

[1] A. GOALIC, R. PYNDIAH, "Real-time Turbo-
decoding of product codes on a digital signal
processor", GLOBECOM '97 Phoenix pp. 624-628
V.2.

[2] C. BERROU, A. GLAVIEUX, P.
THITIMAJSHIMA, "Near Shannon limit
error-correcting coding decoding : Turbo Codes",
IEEE Int. Conf. On Commun. ICC'93, vol. 2, May
1993, pp. 1064-1071.

[3] R. PYNDIAH, A. GLAVIEUX, A. PICART and S.
JACQ, "Near optimum product codes",
Globecom'94 , San Francisco, Nov. ,Dec. 1994 ,
pp. 339-343.

[4] Code Composer Studio, Texas Instruments.
[5] Real-Time Data Exchange, Texas Instruments.

