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Abstract - Turbo codes are becoming a widespread and ma-
ture coding scheme, as they are included in the standards 
of the third generation of mobile communication systems 
[1]. Whereas they were originally shown to perform very 
well from long to medium sizes of block [2], they are now 
also intended to be used for very small blocks. However 
graph theory predicts that in the case of short concatenated 
codes, turbo decoding may be suboptimal because of the 
presence of small loops in the network representation of the 
code [6,7,8,9]. The aim of this paper is first to quantify the 
suboptimality of turbo decoding in the case of short turbo 
codes, and then to propose a novative and simple scheme to 
partially overcome the performance loss. The Union Bound 
using the measured truncated weight distribution of the 
turbo code is recommended as the appropriate tool to 
quantify the suboptimality of iterative decoding compared 
to optimal Maximum Likelihood (ML) decoding. 
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I. INTRODUCTION 

Turbo codes were shown to perform very close to the 
theoretical limit of the channel capacity for long to me-
dium sizes of blocks [2] thanks to their good weight dis-
tribution – i.e. rather large free distance and low multi-
plicity of low weight codewords – and to the ability of 
iterative decoding to perform near optimum decoding in 
the sense of Maximum Likelihood (ML).  

Since, it has been shown that the turbo decoding al-
gorithm is actually an instance of belief propagation on a 
loopy network [6,7,8] which appears to be a well known 
issue in graph theory, and it is admitted that it produces 
optimal performance, i.e. true a posteriori probabilities, 
provided that the network loops are long enough [8]. 
This is the case most of the time when the interleaver is 
large enough, which certainly explains the very good 
performance of the decoding algorithm for long turbo 
codes. However this becomes less obvious concerning 
short turbo codes. 

In the first part of this article we introduce a tool to 
measure the suboptimality of the iterative decoding ap-
plied to a particular turbo code with a specific inter-
leaver. In the second part we briefly recall in what cases 
turbo decoding may be suboptimal and we argue with 
some typical examples. Then we introduce and evaluate 
a simple post processing scheme that helps the turbo de-
coder converge closer to ML decoding. All results are 
presented on AWGN channel. 

II. ML BOUND FOR A PARTICULAR TURBO CODE 

Beyond their theoretical interest, error bounds enable 
to predict the performance of a code at high Signal to 
Noise Ratios (SNR), at Bit Error Rates (BER) that can-
not be reached through simulations, and also to account 
for the efficiency of the decoding scheme. In the case of 
turbo codes the error bounds should also help predicting 
the so-called error floor that shows up at low BER. 
However most of the existing bounds for turbo codes 
have been derived considering a statistical interleaver, 
also called uniform interleaver [3,4,5], and they only 
provide the performance of a turbo code after averaging 
on all possible interleavers. Although it is theoretically 
interesting, such statistical approach is not well suited 
here, as we want to analyze the performance with one 
specific interleaver. In the rest of the article the bound 
we choose to use is the ML Union Bound as it is the 
most straightforward. Considering this bound, we show 
that the average weight distribution obtained with the 
uniform interleaver does not provide sufficiently accu-
rate results and that it is necessary to use the exact 
weight distribution of the code. 

Considering a Parallel Concatenated Convolutional 
Code (PCCC) obtained by concatenation of two Recur-
sive Systematic Convolutional codes (RSC) denoted C1 
and C2, separated by an interleaver of length N (see Fig-
ure 1), the turbo code transfer function using the uniform 
interleaver concept is given by equation (1) : 
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where Aw,j is the number of codewords with information 
weight w and redundancy weight j, and Aw

C1(Z) and 
Aw

C2(Z) are the conditional weight enumerating polyno-
mials of the two elementary codes as defined in [3]. The 
obtained weight distribution is used in the ML Union 
Bound equation for the BER : 

 








≈ ∑

0

erfc
2
1)(

N
ERmDeP bc

m
mb

 (2) 

where Dm is the normalized weight distribution given by: 
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Rc is the code rate and Eb/N0 is the SNR per information 
bit. 
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Figure 1. Parallel Concatenated Convolutional Code (PCCC)  

made of two (5,7)oct RSC constituent codes 

 
As an example, we consider the PCCC made of two 

identical (5,7)oct RSC codes with interleaver length N=80 
represented on Figure 1. The two trellises are terminated 
independently with tail bits. The average distribution Dm 
and the associated ML bound obtained with the uniform 
interleaver, are represented respectively on Figures 2 
and 3. The saturation of the BER curve at low SNR is 
characteristic of the union bound and comes from the 
high multiplicity of higher weight codewords (m > dmin). 
More sophisticated bounds, like the one presented in [5] 
for instance, don’t have this drawback. However in this 
study we are only interested in the lower part of the 
bound corresponding to high SNR, in the so-called “er-
ror floor” region. Indeed at lower SNR no bound is ac-
curate enough to measure the optimality of the decoding 
process. Besides, the weight distribution of higher 
weight codewords and the performance of the turbo code 
at low SNR are much less sensitive to the interleaver. 

The simulated performance of this PCCC using an 
optimized interleaver of length N = 80 is plotted together 
with the average union bound on Figure 3. The inter-
leaver is designed to maximize the free distance of the 
code and the cycles length (see section III). Each ele-
mentary decoder uses a LogAPP and 20 decoding itera-
tions are performed. It shows that the average bound is 
far away from the simulation curve and that it fails to 
predict the error floor effect as it is above the simulation 
curve. Indeed, at high SNR the first term of the summa-
tion in equation (2), corresponding to the minimum dis-
tance of the code, becomes the most significant and it 
turns out to be very different from one particular inter-
leaver to another. In particular, the minimum distance 
with an optimized interleaver is expected to be larger 
than the one given by the uniform interleaver. 

Consequently, for the union bound to reflect the ML 
decoding performance of the turbo code with one par-
ticular interleaver, at least the first terms of the summa-

tion in (2) should be the effective ones, instead of the 
terms given by equation (1). The true first values of Dm 
are obtained here by feeding the turbo encoder with all 
possible sequences of information weight below or equal 
to 5 and measuring the output codewords weights. Low 
weight codewords are given by low weight input se-
quences [4] and it is statistically unlikely that the free 
distance is produced by an input sequence of weight 
above 5 : indeed, low weight codewords are produced by 
input sequences that terminate both trellises, that is by 
sequences that terminate the first trellis and that are in-
terleaved in sequences that also terminate the second 
one. Such mapping is all the more unlikely as the input 
weight is high.  

The obtained measured truncated distribution is 
drawn together with the average distribution on Figures 
2(a) and 2(b) and the corresponding union bound is plot-
ted on Figure 3. The measured weight distribution Dm is 
truncated because only low input weight codewords 
have been enumerated. But as mentioned above, only the 
first values of Dm are relevant at high SNR, which corre-
sponds to the part of the distributions shown on Figure 
2(b). In particular the true free distance is 14, whereas 
the one obtained with the uniform interleaver is only 8. 
Unlike the average bound, this bound does not saturate 
at low SNR because the distribution is truncated.  So, no 
comparison is possible in this region. 
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(a) Complete distributions 
(b) First terms (free distances) 
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Figure 3. Union bounds using the average and measured 

 truncated weight distributions Dm, interleaver length N = 80 

 
The simulation curve converges very close to this 

second bound at high SNR. The error floor occurrence at 
a BER around 10-5 is obviously related to this bound 
and, through it, to the first values of Dm. 

III. ON THE SUBOPTIMALITY OF TURBO DECODING 

The union bound using the measured truncated 
weight distribution of the turbo code accurately reflects 
the ML decoding performance at high SNR. Therefore, 
if turbo decoding was optimal, the simulation curve 
should stick to this bound after a sufficiently large 
amount of decoding iterations.  

However, according to graph theory [6,7,8], the 
turbo decoding algorithm is an instance of belief propa-
gation on the graph representation of the turbo code (see 
Figure 4), and consequently it converges towards the 
true a posteriori probabilities (APP) provided that the 
graph is cycle free, i.e. provided the graph has a tree 
structure. Turbo codes graphs are never cycle free, nev-
ertheless as recalled in reference [8], turbo decoding 
seems to converge towards APP provided that the cycles 
on the graph are long enough. Indeed, on graphs with 
long cycles, the close environment of any bit has almost 
a tree structure. 

This thesis is consistent with the observation made in 
[9] : the turbo decoding algorithm converges all the bet-
ter as the a priori information of each bit is decorrelated 
from its input extrinsic information. As the correlation 
between the output extrinsic information of neighboring 
nodes of the graph decreases along the cycles, this leads 
to the conclusion that the turbo decoding algorithm con-
verges all the better as the correlation cycles are long. 
This is illustrated on Figure 4 : the Tanner graph of a 
turbo code is depicted, presenting a short secondary cy-
cle of length 4, along which the output information re-
mains strongly correlated. 
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Figure 4. portion of the Tanner graph of a turbo code.  

Representation of a short cycle 

 
Coming to practical cases, we consider the four fol-

lowing examples listed in Table 1.  

Table 1 
Example parameters 

 
 N Polynomials/ 

Constr. Length K 
dmin Minimum 

cycle length 
Rate Rc 

Ex. 1 80 (5,7)oct K= 3 14 5 1/3 
Ex. 2 80 (37,21)oct K= 5 17 5 1/3 
Ex. 3 80 (5,7)oct K = 3 14 2 1/3 
Ex. 4  424 (13,15)oct K= 4 3 Long ¾ 

 
The measured truncated union bounds obtained as 

described in chapter II are plotted on Figure 5 together 
with the simulated performance. 30 decoding iterations 
are performed to guarantee optimum convergence. 
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Figure 5. Simulated performance and ML performance 

(union bound using the measured truncated weight 
distribution) for the 3 examples of table 1 

 
Turbo decoding is optimal in example 1 but it is sub-

optimal by 0.4dB at a BER of 10-7 in example 2. The 
minimum cycle lengths of examples 1 and 2 are the 
same but the constraint lengths of the constituent codes 
are different. This suggests that the minimum cycle 



length to achieve optimal decoding may increase with 
the constraint length of the constituent codes : in exam-
ple 1, K is smaller than the minimum cycle length and in 
the second case they are equal.  

In example 3, the interleaver has been optimized 
only with respect to the minimum distance but the mini-
mum cycle length is only 2, which is less than the con-
straint length of the constituent codes. The ML bound is 
close to the one of example 1 because the free distance is 
the same but the turbo code performance is worse be-
cause the turbo decoding is suboptimal. In fact, simula-
tion results over several interleavers show that both the 
minimum cycle length and the multiplicity of short cy-
cles play a role in  the convergence of the turbo decoder. 
In a similar manner that the weight distribution of the 
code determines the error bound, the distribution of the 
cycles length seems to determine the convergence of the 
turbo decoder. 

In example 4, the minimum distance is small due to 
the puncturing but the cycles are long : the ML bound is 
quite high and the turbo decoding is optimal. 

Thus, the observations made on these examples are 
consistent with what is predicted by graph theory. 

 
Conclusion : when designing an interleaver, both the 

minimum cycle length and the free distance of the code 
shall be maximized, as explained in [9]. However, in 
some systems, the interleaver may be poorly designed 
without any possibility to improve it. In other cases the 
interleaver is too small to produce cycles significantly 
larger than the constraint length of the constituent codes. 
For instance, in example 2, it may be difficult to opti-
mize the interleaver so as to produce cycles larger than 
5. In those cases, the turbo decoding algorithm is subop-
timal and a performance gain is achievable by improving 
the decoding process. For instance in example 2 the po-
tential gain is 0.4dB at a BER of 10-7, and in example 3 
the potential gain is 0.2dB at a BER of 10-6. 

IV. IMPROVING SHORT FRAME TURBO DECODING 

The scheme that is proposed below aims at improv-
ing the turbo decoding towards ML decoding when the 
interleaver design or size prevent it from converging 
properly. The basic principle is the following : when er-
rors are detected in the decoded block after a large num-
ber of iterations, the decoded erroneous binary sequence 
is turbo encoded and modulated. The resulting modu-
lated bits sequence is then multiplied by a coefficient α, 
which is in the order of magnitude of 10-2, and sub-
tracted from the corresponding input sequence. The 
turbo decoding process is then applied over to this modi-
fied input sequence. Again, if residual errors are found 
in the decoded block, the same “post processing” 
scheme of re-encoding, re-modulation and subtraction is 
applied, and so on until there is no error left or until a 
maximum number of post processing iterations is 
reached. The proposed scheme is depicted on Figure 6. 
The switch on the left hand side is down when the re-

ceived sequence is going to be turbo decoded for the 
first time, and up when post processing is performed. 
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Figure 6. Post processing scheme 

 
The underlying idea is that the contribution of the de-

coded sequence is subtracted from the received input se-
quence if the turbo decoder fails to correct all errors. 
Consequently, when turbo decoding is performed on the 
modified sequence, the path metric of the erroneous se-
quence – i.e. that was previously produced – in the turbo 
code trellis is reduced so that a neighboring sequence 
will be produced. If the residual errors were due to the 
suboptimality of the turbo decoding, the probability of 
error free convergence at the next step is increased. 

Error detection can be implemented in various ways : 
an error detection code such as Cyclic Redundancy 
Check (CRC) may be concatenated to the data sequence 
before turbo encoding and used at the receiver side to 
check the integrity of the decoded data (CRC is envis-
aged in the UMTS standard [1]). Convergence detection 
based on the cross entropy criterion [10,12] or derived 
criteria [11] may also be used. In product codes such as 
Block Turbo Codes (BTC) [13], the syndrome of each 
elementary code is a straightforward error detection 
scheme. Performance evaluation is presented below with 
various detection schemes. 

IV.1 Ideal error detection 

The proposed scheme is applied to the following 
PCCC :  N = 80, Rc = 1/3, constituent codes (13,15)oct, K 
= 4, minimum cycle length = 4, dmin = 15, with a post 
processing coefficient α = 10-2, and a maximum of 20 
post processing iterations. Perfect error detection is as-
sumed in this first case. The results are plotted on Figure 
7. The dashed line represents the performance without 
post processing.  
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Figure 7. Performance with post processing, α = 10-2, 

until 20 post processing iterations, perfect error detection 



 
The results indicate that the performance loss of 

turbo decoding compared to ML decoding (0.5dB in this 
case) are effectively due to the weakness of the decoding 
scheme itself and that it can be partially overcome with a 
simple scheme.  

Assuming an unrealistic perfect error detection, and 
provided a very long decoding time, all possible code-
words could be tried until the right one is found. How-
ever, because of the low number of post-processing it-
erations, the search space of the turbo decoder is several 
orders of magnitude below the total number of possible 
codewords. 

IV.2 Error detection with CRC 

Residual errors can be detected with Cyclic Redun-
dancy Check bits (CRC) added at the end of the useful 
data sequence. In the case of UMTS, CRC are envisaged 
for any size of block and they were originally introduced 
for ARQ. When used as the error detection scheme 
within the post processing scheme they provide a per-
formance gain, as shown on Figure 8. The turbo code 
parameters are the same as previously. 16 CRC bits are 
added before turbo encoding. At the receiver side, 20 
turbo decoding iterations are performed. When using 
post processing, at most 10 post processing iterations are 
performed. Error detection is used both to interrupt the 
turbo decoding process if there is no error left before the 
last iteration, and in the post processing loop. 
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Figure 8. Performance with post processing, α = 10-2, until 10  
post processing iterations, error detection with 16 CRC bits 

 
The ML bound is the same as on figures 4 and 6, 

shifted by 0.96dB = 10log(80/(80-16)) to account for the 
Eb/N0 penalty due to the 16 CRC bits. The performance 
gain is around 0.5 dB at a BER of 10-6 and the simula-
tion curve is close to the ML bound. Approximately the 
same gain is achieved in terms of FER. 

In this particular case, post processing can be seen as 
an alternative to ARQ with very small latency as no re-
transmission is needed. 

IV.3 Convergence detection based on cross entropy 

Stop criteria are used in turbo decoding to interrupt 
the iterative decoding process when a sequence is prop-
erly decoded before the last iteration, or, more precisely, 
when further iterations will provide no additional per-
formance gain. Indeed, one wishes to avoid unnecessary 
computations, i.e. unnecessary latency and energy con-
sumption. Various stop criteria proposed in the literature 
[10,11,12] are based on the Cross Entropy (CE) between 
the distributions of the estimates of the decoders outputs 
at each iteration. 

In this part we evaluate the performance of the post 
processing scheme when the simplified CE criterion 
proposed in [11] is used as a stop criterion and as an er-
ror detection scheme : if the CE ratio between the cur-
rent iteration and the first one drops below a threshold of 
10-4 the sequence is assumed error free. On the contrary, 
if the ratio remains above this threshold until the last 
turbo decoding iteration, the sequence is considered er-
roneous and post processing is performed. The turbo 
coding and turbo decoding parameters are the same as in 
chapter IV.2. 

 

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,50 2,00 2,50 3,00 3,50
Eb/N0

B
ER

, F
ER

BER, 20 iterations, CE stop
criterion
FER, 20 iterations, CE stop
criterion
BER, 20 iterations, CE stop
criterion and post processing
FER, 20 iterations, CE stop
criterion and post processing
ML bound using measured weight
distribution

 
Figure 9. Performance with post processing, α = 10-2, until 10 post 

processing iterations, error detection using cross entropy 

 
The performance gain is rather small but the BER 

curve is closer to the ML bound. The convergence detec-
tion scheme used may not provide accurate enough error 
detection. More sophisticated convergence detection 
may produce better results. 

IV.4 Complexity considerations 

The decoder hardware complexity is almost un-
changed if a stop criterion is implemented. However the 
decoding latency of erroneous blocks may increase dra-
matically when the post processing scheme is applied : it 
may increase at most by a factor nmax where nmax is the 



maximum number of post processing iterations (typi-
cally 10). Nevertheless, at high SNR, as a large majority 
of blocks is properly turbo decoded,  the average latency 
only increases by a factor β given by : 

 ( ) FERnFER *1 max+−≈β  (4) 

In practical cases β is approximately 1. For instance 
FER = 10-3, nmax = 10 yields β  = 1.009. 

The scheme may not be applied to highly delay 
sensitive applications because of the maximum latency, 
but it can be applied to any other application as an 
alternative to ARQ, for instance when the latency of the 
ARQ scheme is too long. 

V. CONCLUSION 

To investigate the suboptimality of turbo decoding 
applied to a specific turbo code, we compared the simu-
lated performance of turbo decoding to the union bound 
using the measured truncated weight distribution of the 
code. Indeed, this bound provides the accurate perform-
ance of the considered turbo code with ML decoding at 
high SNR, unlike the union bound obtained with the so-
called uniform interleaver that only gives the ML per-
formance averaged on all possible interleavers. We ob-
served through simulations that turbo decoding is subop-
timal for interleavers yielding short cycles in the graph 
of the turbo code, which is very likely for short turbo 
codes. This observation is consistent with graph theory. 
Comparing the simulation performance with the error 
bound, we measured a performance loss around 0.5dB in 
some cases. At last, we proposed a simple and novative 
scheme based on error detection and re-encoding to par-
tially overcome this loss. Depending on the robustness 
of the error detection scheme, a performance gain be-
tween 0.1 dB and 0.5 dB is obtained at a BER of 10-6. 
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