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Abstract

In this paper, the sub-optimality of iterative decoding of BCH product codes also called Block Turbo Codes
(BTC) is investigated.  Lower bounds on Maximum Likelihood (ML) decoding performances for Packet Error
Rate (PER) and Bit Error Rate (BER) are given in order to evaluate the optimality of the iterative decoding
algorithm. On an AWGN (Additive White Gaussian Noise) channel, simulations show that the turbo decoding of
product code is sub-optimal for long codes, even when the elementary codes are decoded in an optimal way. We
propose to apply after turbo decoding a scheme to combat this sub-optimality. This scheme is described, the
performance gain is then evaluated on Gaussian and Rayleigh channels.

1 Introduction

Turbo-codes have attracted much attention these years
thanks to their performance approaching Shannon's
theoretical limit. Their very good performance stem
both from their good weight distribution and from
their ability to be decoded in a nearly optimal way
through an iterative decoding process called turbo
decoding. Turbo codes are included in more and more
standards such as the third generation of mobile
systems [1] and more recently they have been chosen
as an option in the IEEE 802.16 [2] and
HIPERACCESS standards [3]. Convolutional Turbo
Codes (CTC) were introduced in 1993 [4], they are
based on the parallel concatenation of two
convolutional codes separated by a pseudo-random
interleaver and iterative decoding of the resulting
code using Soft-Input-Soft-Output (SISO) decoders.
The concept was extended to the iterative decoding of
product codes also called Block Turbo Codes (BTC)
[5] made of the serial concatenation of BCH codes.
This paper deals with BTC which are particularly
attractive for applications requiring high code rate and
present good free distance even for small block sizes
unlike CTC. The aim of this paper is first to quantify
the sub-optimality of two iterative decoding
algorithms of product codes compared to ML
decoding. One is based on a sub-optimal BCH
decoding algorithm and the other one is based on an
optimal BCH decoding algorithm. Secondly, the aim
is to provide a way to improve the turbo decoding
process in those cases. In this view, after a recall on
the iterative decoding of product codes in section II, a

lower ML bound is given in section III that accurately
predicts the ML performance of the studied product
code at high Signal to Noise Ratio (SNR) on an
AWGN channel. The performances of BTC with the
two iterative decoding algorithms are compared to
this lower ML bound. In section IV, a scheme that
enables to partly overcome the sub-optimality of
turbo decoding is then presented and evaluated on
AWGN and Rayleigh channels, and the results are
discussed.

2 Iterative decoding of product
codes

2.1 Product codes

Let P be the product code resulting from the serial
concatenation of two linear block codes C1(n1,k1,d1)
and C2(n2,k2,d2), where ni, ki and di are respectively
the code word length, the number of information bits
per code word and the Hamming distance of code Ci,
i=1,2. The product code P=C1⊗C2 is represented by a
matrix obtained by encoding the k2 rows of k1

information bits by code C1, then encoding the n1

resulting columns of the matrix by code C2. By
construction, all the n2 rows of the matrix are code
words of code C1 and all the n1 columns are code
words of code C2. The product code parameters are
the product of the elementary code parameters:
n=n1.n2, k=k1.k2, dmin=d1.d2, and the code rate is given
by R=R1.R2 where Ri is the code rate of code Ci, i=1,2.



2.2 Iterative decoding of product codes

Iterative decoding of product codes consists in
decoding successively the rows and the columns of
the matrix and iterating the procedure. To be efficient,
the constituent code decoder has to work on soft
inputs and deliver soft outputs that evaluate the
reliability associated to the decision on each bit.
From the soft outputs generated by the decoding of
one dimension (the rows or the columns), an extra
information called extrinsic information is extracted
and used to modify the associated soft inputs - the a
priori informations - of the next decoder. A sub-
optimal and an optimal ML decoding algorithm of
BCH constituent codes are evaluated in this paper as
the elementary SISO decoders of the turbo decoder.
These two algorithms are presented below.

2.2.1 The sub-optimal algorithm

A SISO decoder was proposed by R. Pyndiah [5] that
is based on the Chase algorithm [6] to compute the
approximated Log A Posteriori Probability ratios
(LAPP). The Chase algorithm intends to provide the
code word that is the closest to the received sequence
according to the Euclidian distance criterion. For that
purpose, a subset of code words is generated, which
in most cases will contain all the nearest code words
from the received word. In order to compute the soft
output, the two nearest code words with opposite
component in position j are searched in this subset.
The nearest code word will be the approximated ML
decision D and the second one is the competing code
word C. The soft output component in position j is
calculated as the difference between the two
following squared Euclidian distances: MD, the
squared Euclidian distance between the received
sequence R=(r0,…, rj,…, rn-1) and the ML decision
D=(d0,…, dj,…, dn-1), and MC, the squared Euclidian
distance between the received word R and the
competing word C=(c0,…, cj,…, cn-1). The relation
below calculates the corresponding extrinsic
information component wj in position j.
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In some cases there is no competing code word with
opposite component in position j in the subset and the
extrinsic information is then estimated by a
predefined value, which is less accurate.

2.2.2 The optimal algorithm

The optimal decoding algorithm of the constituent
block codes is a Maximum A Posteriori (MAP)

algorithm that minimizes the symbol error probability
and was proposed by L.E. Nazarov [7]. This
algorithm uses Fast Hadamard Transform (FHT) for
the calculation of the soft information with the
dimension of the FHT basis being determined by the
dimension of the dual code matrix. The decoding rule
is exhaustive in the sense that every word in the
constituent dual code is used in the decoding process.

3 On the optimality of the
iterative decoding

3.1 The ML bound

Error bounds enable to predict the performance of a
code at high SNR, at error rates that cannot be
reached through simulations, and also to account for
the efficiency of the decoding scheme.
The Union bound is an upper bound reflecting ML
decoding performance that is very accurate at high
SNR. The union bound on the Packet Error Rate
(PER) assuming transmission over an AWGN channel
is given by:
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Where P
wA  is the number of product code words of

weight w.
A product code has the particularity to have a large
number of code words at minimum distance and to
have the following non-zero multiplicities at weights
quite far from the minimum distance. Taking into
account this particularity, the first term is the one that
influences the most the Union bound and the terms of
higher orders can be neglected for large SNR. This
results in the following lower bound [8, 9].
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C
dA  are respectively the number of

code words at minimum Hamming distance d1 and d2

of C1 and C2.
The corresponding lower ML bound on the Bit Error
Rate (BER) is given by:
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These two lower bounds are still very accurate at high
SNR.

3.2 Performance evaluation

The performances are evaluated over an AWGN
channel with the sub-optimal and the optimal BCH
decoding algorithms, for product codes generated by
two identical extended BCH codes (i.e. C1=C2). The
BER versus Eb/N0 after four decoding iterations is
plotted for the BTC (16,11,4)2 and (64,57,4)2 and
compared with their corresponding lower bound
(Figures 1 and 2). Indeed very low gain is achieved
beyond the fourth iteration.
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Figure 1: BER vs. Eb/N0 for the BTC (16,11,4)2 after
four iterations with the sub-optimal Chase-Pyndiah

algorithm.
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Figure 2: BER versus Eb/N0 for the BTC (64,57,4)2

after four iterations with the two BCH algorithms.

If the decoding process is optimal in the sense of
Maximum Likelihood, the simulation curves shall
stick to the ML bound. For the BTC (16,11,4)2,
iterative decoding with the sub-optimal Chase-
Pyndiah algorithm is sufficient to reach the ML bound
quite rapidly. For the BTC (64,57,4)2, the Eb/N0 must
be sufficiently high for the 'turbo effect' to appear.
Even if the BER decreases rapidly in the waterfall

region for the optimal and sub-optimal algorithms, the
simulation curves converge towards the ML bound
only at high Eb/N0, for very low BER. For the optimal
algorithm the simulation curve seems to converge
towards the ML bound for a BER less than 10-7 and
for the sub-optimal algorithm it seems that the
simulation curve will never reach it.
For BTC, even if the minimum distance is high, when
the code rate increases, the iterative decoding appears
to be sub-optimal since performances do not stick to
the ML bound. When the product of dmin and R is
high that is when the asymptotic gain Ga is high, the
BTC iterative decoding is sub-optimal for low SNR
and converges towards the ML bound only for low
error rates at high SNR. The asymptotic gain is given
by:

( ) ( )min10 .log*10 dRG dBa =              (6)

The sub-optimality of turbo decoding of BTC can be
at least partly explained by graph theory [10, 11].
Indeed, representing a BTC on a Tanner graph, it
shows that the resulting network has a large number
of very short cycles. Therefore, the information
produced by neighbouring nodes along the decoding
process remains very correlated with each other and,
as predicted by graph theory, the decoding algorithm
will consequently fail to produce the true a priori
probabilities (APP). Besides, as the number of short
cycles increases with the BTC size, this may explain
that the turbo decoding performances are all the more
sub-optimal as the code is long as shown on Figures 1
and 2.

4 A scheme to combat the sub-
optimality of turbo decoding

4.1 Description of the post-processing
scheme

The turbo decoding of product codes with high
asymptotic gain Ga converges towards the ML bound
at high SNR. The scheme that is proposed below aims
at improving the turbo decoding to get closer to the
ML bound at lower SNR. The basic principle is the
following [12]: when errors are detected in the
decoded block after a certain number of iterations, the
decoded erroneous binary sequence is turbo encoded
and modulated. The resulting sequence is then
multiplied by a coefficient that is in the order of
magnitude of 10-2, and subtracted from the input
sequence. The turbo decoding process is then applied
over with this modified input sequence. Again, if
residual errors are found in the decoded block, the
same post-processing scheme of re-encoding, re-
modulation and subtraction is applied, and so on until
there is no error left or until a maximum number of



post-processing iterations is reached. The proposed
scheme is depicted on Figure 3. The switch on the
left-hand side is down when the received sequence is
going to be turbo decoded for the first time, and up
when post-processing is performed.
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Figure 3: iterative post-processing scheme

The underlying idea is that the contribution of the
erroneous decoded sequence is partly subtracted from
the received input sequence if the turbo decoder fails
to converge towards the transmitted code word.
Consequently, when turbo decoding is performed on
the modified sequence, the erroneous code word
towards which the turbo decoder first converged gets
farther away from the received sequence, so that the
turbo decoder will tend towards another code word
which will hopefully be the transmitted one. If the
residual errors were due to the sub-optimality of the
turbo decoding, the probability of error free
convergence at the next step is increased.
Error detection [13] can be performed after the
iterative decoding of product codes by only checking
if all the rows and the columns of the decision matrix
[D] are respectively code words of C1 and C2. If that
is the case, [D] is a code word of P and no error is
detected. Thus, no additional check bits are required
for error detection. However in two situations, it
happens that this scheme fails to correctly predict if
errors remain. First, when the decision matrix [D] is
not equal to the transmitted code word [E] but is a
code word of P. In this case, the matrix [D] contains
residual errors but those errors are not detected.
Second, when [D] is not a code word of P, but the
residual errors are only located on the redundancy
part of the matrix. All errors on the information bits
have been corrected but an alarm is generated by the
detection scheme.

4.2 Performance evaluation

4.2.1 On Gaussian channel

The proposed scheme is applied to the BTC
(32,26,4)2 and (64,57,4)2 with the sub-optimal and the
optimal BCH algorithms. The detection scheme is the
one presented above. The performances are evaluated
on a AWGN channel with a maximum of 20 post-

processing iterations. A post-processing iteration is
the turbo decoding of the product code with four
iterations. The results are compared with the lower
ML bound in terms of BER and PER.
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Figure 4: BER versus Eb/N0 for the BTC (32,26,4)2

after four iterations with post-processing.
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Figure 5: PER versus Eb/N0 for the BTC (32,26,4)2

after four iterations with post-processing.
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Figure 6: BER versus Eb/N0 for the BTC (64,57,4)2

after four iterations with post-processing.
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Figure 7: PER versus Eb/N0 for the BTC (64,57,4)2

after four iterations with post-processing.

The optimal BCH algorithm always performs better
than the sub-optimal algorithm in terms of BER and
PER. For the BTC (32,26,4)2 at high Eb/N0, the
simulation curve of the Chase-Pyndiah algorithm
tends towards the performance of the optimal
algorithm while for the BTC (64,57,4)2 the two
curves are parallel. With the post-processing scheme,
for the BTC (32,26,4)2 the gain is in the order of 0.1
dB at a BER of 10-5 and 0.15 dB for a PER of 10-3.
When the code is longer, for the BTC (64,57,4)2 the
gain provided by the post-processing scheme
increases and is in the order of 0.25 dB for the
optimal algorithm and 0.3 dB for the sub-optimal
algorithm. The tables below summarize the results.

BER=10-5 PER=10-3

Optimal 0.1 dB 0.14 dB
Sub-optimal 0.12 dB 0.15 dB

Table 1: Gain provided by the post-processing
algorithm with 20 iterations for the BTC (32,26,4)2.

BER=10-5 PER=10-3

Optimal 0.23 dB 0.23 dB
Sub-optimal 0.28 dB 0.33 dB

Table 2: Gain provided by the post-processing
algorithm with 20 iterations for the BTC (64,57,4)2.

Note that using this error detection scheme results in
increasing the BER and PER as compared as using an
ideal error detection scheme. However, regarding the
gain obtained with the post-processing scheme, this
error detection scheme seems accurate enough.

4.2.2 On Rayleigh channel

The post-processing scheme is applied to the
(64,57,4)2 with the sub-optimal and the optimal BCH
algorithms. The performances are evaluated on a
Rayleigh channel with maximum 20 post-processing

iterations and also with 4 and 2 post-processing
iterations in order to reduce the decoding delay. The
detection scheme is the one presented above.
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Figure 8: BER versus Eb/N0 for the BTC (64,57,4)2

with 20, 4 and 2 post-processing iterations and
compared with classical turbo decoding.
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Figure 9: PER versus Eb/N0 for the BTC (64,57,4)2

after 20, 4 and 2 post-processing iterations and
compared with classical turbo decoding.

On the Rayleigh channel, the turbo decoding of the
product code (64,57,4)2 with the optimal BCH
algorithm provides a significant gain of around 1.5
dB in terms of BER and PER as compared with the
sub-optimal BCH algorithm.
For the BTC (64,57,4)2 the gain provided by the post-
processing scheme with 20 iterations is higher on the
Rayleigh channel than on the Gaussian channel. It is
in the order of 0.35 dB in terms of BER and exceeds
0.56 dB in terms of PER.
For low error rates, this post-processing scheme is
most of the time performed and does not always
converge towards the transmitted code word after the
20 iterations. For high error rates, the post-processing
scheme converges most of the time towards the
transmitted code word with only 2 or 4 iterations. For



some applications, the decoding delay introduced by
the post-processing scheme with 20 iterations could
be too high, but 2 to 4 post-processing iterations
could be acceptable. The performance evaluation of
the BTC(64,57,4)2 on the Rayleigh channel with the
post-processing scheme with 4 and 2 iterations show
that there is only a negligible degradation for 4
iterations and a small degradation for 2 iterations for
both algorithms. The table 3 below summarizes the
results.

Nber of
iterations

BER=10-5 PER=10-3

Optimal 20 0.37 dB 0.56 dB
Sub-optimal 20 0.34 dB 0.75 dB
Optimal 4 0.34 dB 0.51 dB
Sub-optimal 4 0.34 dB 0.72 dB
Optimal 2 0.24 dB 0.4 dB
Sub-optimal 2 0.31 dB 0.62 dB

Table 3: Gain provided by the post-processing
algorithm with 20, 4 and 2 iterations for the BTC

(64,57,4)2 on the Rayleigh channel.

5 Conclusion

The lower ML bound of product codes is used to
investigate the optimality at high SNR of block turbo
decoding with a sub-optimal and an optimal BCH
decoding algorithm. The performances loss is
quantified for the BTC (16,11,4)2, (32,26,4)2 and
(64,57,4)2 . The BTC (16,11,4)2 with code rate
R=0.47 converges rapidly towards the ML bound
while the BTC (64,57,4)2 with code rate R=0.79
converges at only high SNR for very low error rates.
Iterative decoding is sub-optimal for product codes
with a high code rate, and more precisely with a high
asymptotic gain. A scheme based on error detection
and re-encoding is proposed to partly overcome this
loss. The error detection scheme does not require
transmitting any additional bits. For the BTC
(64,57,4)2 with 20 post-processing iterations, the
performance gain at a PER of 10-3 is up to 0.33 dB on
a Gaussian channel and up to 0.75 dB on a Rayleigh
channel. On a Rayleigh channel, the turbo decoding
of the product code (64,57,4)2 with the optimal BCH
decoding algorithm performs around 1.5 dB better in
terms of BER and PER compared to the turbo
decoding with the sub-optimal BCH decoding
algorithm. For applications with delay constraints, the
number of post-processing iterations can be reduced
to 4 or 2 still leading to interesting performance gain.
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