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Abstract – When performed using an exhaustive search, the
Maximum Likelihood (ML) joint detection of all users in a Multi-
Carrier Code Division Multiple Access (MC-CDMA) system has a
prohibitive complexity, growing exponentially with the number of
users and the number of bits in each modulation symbol. An ML
multiuser detection algorithm has recently been proposed, with a
complexity growing polynomially with the number of users,
independent of the modulation size. The MC-CDMA system is
modelled as a sphere packing lattice and a low-complexity
optimum lattice decoder, called the sphere decoder, is applied to
jointly detect all users. We propose sub-optimum simplifications,
based on orthogonal projection of the received signal on a facet of
the lattice constellation, to further decrease the complexity.
Simulation results are shown with up to 64 users transmitting
16-QAM symbols.

I. INTRODUCTION

The Multi-Carrier Code Division Multiple Access (MC-
CDMA) technique, initially proposed by [1][2][3], efficiently
combines the Orthogonal Frequency Division Multiplex
(OFDM) modulation and the code division multiple access
technique. Each user symbol is transmitted over several sub-
carriers. On each sub-carrier, this signal is multiplied by a
distinct element of a user-specific signature. In other words, the
transmitted symbol is spread before OFDM modulation. Low
cross-correlation values between signatures are desirable to
enable user separation at the receiver. Thanks to the guard
interval between OFDM symbols, MC-CDMA systems do not
suffer from inter-symbol interference (ISI) and quasi-
synchronism between users may be obtained in the uplink.
Furthermore, the OFDM modulation takes advantage of a large
frequency diversity. To combat the multiuser interference due
to the loss of orthogonality introduced by the transmission on a
multipath channel, various single-user and multiuser detection
techniques have been proposed [4]. Among them, the optimum
multiuser detection, based on a Maximum Likelihood (ML)
exhaustive search [2], has a prohibitive complexity, growing
exponentially with the number of users and the number of bits
per modulation symbol.

A new ML detection algorithm with low complexity has
recently been proposed [5]. This algorithm, called the Sphere
Decoding algorithm, originally employed for sphere packing
lattice decoding [6][7], has also been proposed to simplify the
ML multiuser detection in Direct-Sequence Code Division
Multiple Access (DS-CDMA) [8]. The MC-CDMA receiver
models the Maximum Ratio Combining (MRC) output as a
multi-dimensional sphere packing lattice point corrupted by
additive noise. The lattice sphere decoder is then applied to
jointly detect all users. Its complexity is a polynomial function

of the number of users and is independent of the modulation
size. Thus, it allows optimum performance even for full-loaded
systems using large modulations. The absence of ISI and the
synchronism assumption make the MC-CDMA a particularly
suitable system for lattice representation and sphere decoding.
However, for a large number of users, the decoding complexity
may still be too high for very noisy received signals. In this
case, we propose sub-optimum simplifications by orthogonal
projection, which speed up the decoding process with low
performance loss.

The paper is organised as follows: Section II describes the
synchronous MC-CDMA system and the corresponding lattice
representation. In section III, the sphere decoder is explained
for lattice constellations and then applied to MC-CDMA.
Simplifications are described in section IV. Simulation results
for downlink are presented in section V and compared to those
of classical sub-optimum detection algorithms before
conclusion.

II. LATTICE REPRESENTATION OF AN MC-CDMA SYSTEM

Let us represent a synchronous MC-CDMA system using a
sphere packing lattice [9]. A κ-dimensional sphere packing
lattice of Rν is a discrete subgroup (or a Z-module) with rank κ
of Rν. We denote R the real space and Z the integer ring. Each
point x of lattice Λ may be written as the linear combination of
κ basis row vectors vk:

x = b1v1 +…+ bκvκ  where bk ∈ Z, ∀ k = 1,…,κ (1)

Vectors vk compose the κ × ν lattice generator matrix G. Thus,
x = bG where b = (b1,…,bκ)∈ Zκ.

We consider a synchronous MC-CDMA system with K users
as depicted on Fig. 1. At time i and for user k, the transmitted
symbol bk(i) is spread by a Walsh-Hadamard signature
ck = (ck1,…,ckL), with length L, orthogonal to other users’
signatures. The L obtained chips are transmitted with amplitude
ωk on the L different sub-carriers building an OFDM symbol.
Each symbol bk(i) is taken from Ak = {bmin,k, bmin,k+1,…, bmax,k}

2, a
complex modulation alphabet with cardinality |Ak|, i.e., the real
and imaginary parts bk

R(i) and bk

I(i) belong to an integer
alphabet, a Pulse Amplitude Modulation (PAM). E.g., bmin,k = 0
and bmax,k = 3 for a 16-QAM (Quadrature Amplitude
Modulation) alphabet. This constellation is obviously not
optimal from the energy point of view, but a 16-QAM
constellation with minimum energy can also be used at the
price of a few additional operations [5]. A guard interval ∆ is
inserted to absorb ISI. We denote sk(i) the modulated signal
filtered by a frequency selective multipath channel. After



addition of interfering users’ signals, ∑k’≠ksk’(i), and Additive
White Gaussian Noise (AWGN), OFDM demodulation is
performed. The channel is assumed non frequency selective on
the sub-carrier bandwidth and is thus described by a single
complex coefficient hk�(i) for each user k and each sub-carrier �.
We denote C(i) = [Ck�(i)] the K × L matrix merging spreading
and channel coefficients for all users: Ck�(i) = ck�hk�(i). At time i,
r(i) = (r1(i),…,rL(i)), the received vector, may be expressed as

)()()()( iiii η+= CDbr ω (2)

where vector b(i) = (b1(i),…,bK(i)) contains the K transmitted
symbols, Dω = diag(ω1,…,ωK) contains the user amplitudes and
η(i) = (η1(i),…,ηL(i)) is the AWGN vector.
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Fig. 1: MC-CDMA transmitter and OFDM receiver.

We now focus on the ML multiuser detection using the
received signal given by (2). It can be shown [5] that a
sufficient statistic for the ML detection of transmitted vector
b(i) is the observation vector y(i) = (y1(i),…,yK(i)), where yk(i)
is the MRC output for user k [3]:
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y(i) may be written in a matrix form from (3):

)()()( iii HCry
∆
= (4)

where • H denotes the transpose-conjugate. By including (2) in
(4), we obtain y(i) as a function of b(i):

)()()()()( iiiii H nCCDby += ω (5)

where noise n(i) = (n1(i),…,nK(i)) = η(i)CH(i).
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Fig. 2: Geometrical representation of sphere decoding (κ = 2).

We now write all previously defined complex vectors (resp.
matrices) of size K (resp. K × K) as real vectors (resp. matrices)
of size 2K (resp. 2K × 2K):

e.g., ( ))(,)(,,)(,)()( 112 ibibibibi I
K

R
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where R(i) = [Rij] = C(i)CH(i). Each complex value a is
expressed as a = aR + j.aI. With the above notations, we obtain

)()()()( 2222 iiii nMby +=  with Ki 2
2 )( Zb ∈ (7)

y
2(i) is a point of a lattice Λ 2 in R2K, with dimension 2K and

generator matrix M
2(i) = Dω,2

R
2(i), corrupted by an additive

noise n2(i) with covariance matrix N0
R

2(i). The multiple access
system generates a point b2(i)M2(i) belonging to a constellation
i.e., a finite subset of Λ 2, with size |A1| × … × |AK|. Using the
lattice representation allows us to apply the Sphere Decoding
algorithm [6][7], a low complexity ML decoding algorithm.

III. SPHERE DECODING OF A SYNCHRONOUS
MC-CDMA SYSTEM

Let us first describe the ML decoding on AWGN channel of
a κ-dimensional lattice Λ in Rκ generated by a real κ × κ matrix
G. The decoder has to find the closest lattice point to the
received vector i.e., to minimise

( ) 2

1
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where y = x + η is the received vector, η = (η1,…,ηκ) the
Gaussian noise vector and x = (x1,…,xκ) a point of Λ. η has real
independent elements with zero mean and variance N0. Lattice
points {x = bG} are obtained from data vectors
b = (b1,…,bκ)∈ Zκ. In practice, the set of data vectors is limited
to a finite alphabet A(κ) ⊂  Zκ and an exhaustive ML decoder
searches for the best point x among all points in the finite
constellation. The sphere decoder restricts its computation to
the points located inside a hypersphere with radius C  centred

on the received point as shown on Fig. 2 for κ = 2 and a
constellation with 20 points. The following minimisation is
performed to find the shortest vector w in translated set y – Λ:

wxy
ywx Λ−∈Λ∈

=− minmin (9)

The difference w = ξG, ξ = (ξ 1,…,ξ κ)∈ Rκ, is a lattice point,
whose coordinates ξ i are expressed on the translated basis
centred on received vector y = ρG, ρ = (ρ 1,…,ρ κ)∈ Rκ. Since w
must be located in a hypersphere with quadratic radius C
centred on y, we get:

CTT ≤= ξξGGw
2

(10)



In the new coordinates’ system defined by ξ, this
hypersphere is changed into a hyperellipse centred at the origin.
The Cholesky factorisation of the Gram matrix Γ = GGT yields
Γ = AAT, where lower triangular matrix A has elements aij.
Using (9), it can be shown [6][7] that a point is inside the
hyperellipse if and only if

∀ k = 1,…, κ,  kkk BbB max,min, ≤≤
where (11)
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2 , qkj = akj / ajj ,  x  is the ceil function and  x  the floor
function. κ  counters, one per dimension, enumerate all values
of vector b such that lattice point x = bG is located within the
quadratic distance C from the received point. Points located
outside the considered hypersphere are never tested.
Consequently, the complexity of this optimum decoding does
not depend on the lattice constellation size |A(κ)|. Furthermore,
the search is drastically speeded up by updating C  with the
last computed norm ||w||. Finally, the selected point x is the
point associated to the minimum norm ||w||. Since the number
of points located in the decoding hypersphere increases with
radius C , it must be carefully chosen. A large value slows
down the algorithm, whereas the hypersphere may be empty if
C is too small. By taking a search radius greater than the
covering radius [9] depicted on Fig. 2, we ensure that the
decoder will find at least a lattice point. However, this point
does not necessarily belong to the finite constellation.
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Fig. 3: MC-CDMA detector with sphere decoding (after FFT).

For multiuser detection, the sphere decoding is applied to the
2K-dimensional lattice representing the MC-CDMA system,
one time for each received point i.e., for K users. Since the
additive noise samples in (7) are correlated, we have to whiten
the noise in the MRC outputs in order to match the above
sphere decoding assumptions. To simplify notations, we omit
all ‘i’ indices. The Cholesky factorisation of cross-correlation
matrix R2 yields R2 = W2W2

T, where W2 is lower triangular. The
whitened observation is

2
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−− TT (12)

where E[ 2
~n T

2
~n ] = N0 I2K. This observation must be processed

with the sphere decoder associated to a new lattice generated by
matrix G2 = Dω,2W2 in order to finally obtain the detected vector

2b̂  [5]. The receiver structure is depicted on Fig. 3. To ensure
that 2b̂  belongs to the transmitted constellation, bounds in (11)
must be appropriately restricted:

∀ k = 1,…, 2K,  kkk BbB max,,2min, '' ≤≤

where   ),max(' 2/min,min,min, kkk bBB = (13)

  ),min(' 2/max,max,max, kkk bBB =
These restricted bounds avoid considering lattice points located
in the search sphere but not belonging to the constellation. This
restriction, preserving the algorithm optimality, yields a
complexity reduction, which is higher with smaller
constellations. Thus, the obtained complexity is not
independent of the constellation size anymore.

IV. SIMPLIFICATIONS BY ORTHOGONAL PROJECTION

Very noisy received vectors are received far away from the
constellation. Hence, to preserve optimality, we must choose a
search radius much larger than the covering radius and the
algorithm becomes very slow. To ensure realistic decoding
speed for noisy symbols, we propose to orthogonaly project
them on the lattice constellation. The sub-optimality introduced
by projection is expected to have a small impact on
performance as it acts on very noisy and thus unreliable
symbols.

A. Selection of the projection sub-space

Since the number of points per dimension corresponds to the
number of modulation symbols in phase or quadrature, this
number is constant for a given dimension, whatever the values
of other coordinates i.e., whatever the symbols transmitted by
other users. Thus, the integer coordinates define a hypercube
and the lattice constellation is a parallelogram, as depicted on
Fig. 4a and 4b respectively. Fig. 4 also shows how the
dimension of the affine projection sub-space depends on the
received vector location. It is easier to transpose the problem
from the lattice real space (Fig. 4b) into the integer coordinate
space (Fig. 4a). Instead of projecting directly on the
constellation facet, we prefer assigning the following extended
bounds to each dimension k: fmin,k = bmin,k– αk and fmax,k = bmax,k + αk

where αk is a real positive value.
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Fig. 4: Determination of the projection characteristics (2K = 2).



As depicted on Fig. 4, we use vector ρ = y~ 2
G

2

–1 to determine
on which affine sub-space we project the received point.
Indeed, this vector shows us the received point’s position with
respect to the constellation and the type of projection we have
to carry out: projection on a point for y~ 2 or projection on a
straight line for y~ 2’. We choose the following sub-optimum
choice criterion: If Q dimensions are such that ρk ≤ fmin,k or
ρk ≥ fmax,k, we assign fmin,k or fmax,k to these values and we project
on the corresponding affine sub-space AN with dimension
N = 2K – Q.

B. Definition of the projection on a constellation facet

Without loss of generality, we assume ρk ≥ fmax,k, k = 1,…,Q.
Let yP = ρPG

2 be the orthogonal projection on the affine sub-
space AN with dimension N of the whitened vector 2

~y .
According to the projection criterion, the Q first coordinates are
fixed to fmax,k: ρk

P = fmax,k for k = 1,…,Q. Thus,
1101100P .. GyGGy ρρρ +=+= (14)

where ρ0 = (fmax,1,…, fmax,Q) is a 1 × Q row vector, y0 a 1 × 2K row
vector, ρ1 a 1 × N row vector representing the degrees of
freedom, G0 a Q × 2K matrix including the Q first rows of G2

and G1 a N × 2K matrix, including the N last rows of G
2 and

building a basis of the vector sub-space VN. The projection on
this vector sub-space, generated by rows of G1, can be easily
written by

( ) 0110
2

P ..~ yGGyyy +−=
+

, (15)

where ( ) 1H11H11 .
−+

= GGGG  is the pseudo-inverse of G1.

The projected point is closer to the constellation, hence the
sphere detection in the 2K-dimensional space will be faster.
The gain in complexity will be all the higher as the signal to
noise ratio will be small.

C. Sphere decoding in the reduced dimension lattice

Instead of considering the 2K-dimensional lattice for sphere
decoding, we may limit us to the N-dimensional lattice included
in the projection sub-space AN. Indeed, points of lattice Λ2 in
R2K contained in this N-dimensional affine sub-space are also
points of a lattice Λ’ in RN. If sphere decoding is performed on
lattice Λ’ with dimension N ≤ 2K, the detection is further
speeded up at the cost of a slight approximation: the detection
simplification is based on the assumption that the transmitted
point belongs to the facet on which the whitened vector 2

~y  has

been projected, although the closest lattice point of Λ2 might
not belong to this facet.

To proceed to the decoding in lattice Λ’, the received point
must be directly projected on the constellation facet: If Q
dimensions are such that ρk ≤ fmin,k or ρk ≥ fmax,k, the correspon-
ding coordinates are fixed to bmin,k or bmax,k. Without loss of
generality, we assume ρk ≥ fmax,k, k = 1,…,Q. According to the
projection criterion, the Q first coordinates are fixed to bmax,k:
ρk

P = bmax,k for k = 1,…,Q. From (12), we then write the
projection as a point of Λ2 corrupted with additive noise:

P1100P
2

PP nGbGbnGby ++=+= (16)

where b0∈ ZQ, b1∈ ZN, nP is the noise vector.
Since the transmitted point is assumed to belong to the

projection facet, the Q first coordinates of the detected vector
will be b0 = (bmax,1,…,bmax,Q). Let us now focus on the detection
of vector y1 with dimension 2K belonging to the vector sub-
space VN and obtained by subtracting the constant vector
y0 = ρ0G0 = b0G0 from (16):

P110P1 nGbyyy +=−= (17)

Matrix G1 contains N basis vectors with size 2K. Thus, y1 is
noisy point of a N-dimensional lattice in R2K. In order to be
treated by the decoding as presented in section III, the
observation vector must be a noisy point of an N-dimensional
lattice Λ’ in RN. We have to find a N × N matrix B1 generating a
lattice equivalent to the lattice generated by G1 in R2K. Equation
(10) is the single relation employed in the sphere decoding and
involving the lattice structure, through the Gram matrix of the
generator matrix. In order that the lattice generated by B1 be
equivalent to the lattice generated by G1, both matrices must
have the same Gram matrix. Thus, B1 can be found by
Cholesky factorisation of the Gram matrix of G1:

TT 1111 BBGG = (16)
Let U be the 2K × N transfer matrix such that B1 = G1U. It can
be shown that

( )TT 111 −= BGU (17)

If the row vector x1 = b1G1 with size 2K is a point of Λ’, then
the row vector x1’ with size N, point of Λ’, is obtained by
x1’ = x1U = b1B1. So, the same transformation has to be
performed on y1 before detection:

( ) '' 111P1111 nBbUnGbUyy +=+== (18)

We can easily show that E[n1’Tn1’] = N0 I
N. No further noise

whitening is necessary. Elements of b1, obtained by sphere
decoding of vector y1’, are the non-fixed integer coordinates of
the detected vector. Together with the fixed elements of b0, they
form the detected vector b̂ .

V. SIMULATION RESULTS

The sphere decoding has been tested in downlink on an
indoor channel defined in [10], with a delay spread equal to
390 ns. All users have same power and transmit 16-QAM
symbols on L = 64 sub-carriers over a 20 MHz bandwidth.
With a HIPERLAN/2-like guard interval (25% of the OFDM
symbol period), the obtained bit rate is 1 Mbit/s/user. Thus, by
using a high spectral efficiency 16-QAM modulation, a total bit
rate of 64 Mbits/s can be reached for full-load. The channel
coefficients change for each transmitted symbol. We assume
the power control being perfect i.e., at each time i, the received
symbol power is equal to the transmitted symbol power.

In Fig. 5, for half-load (32 users), the optimum performance
of the sphere decoding is compared with the performance of
three sub-optimum detection schemes: the single-user
Minimum Mean Square Error Combining (MMSEC) [1], the
multiuser Parallel Interference Cancellation (PIC) with 2



iterations including MMSEC and hard cancellation [2], and
finally the multiuser Global Minimum Mean Square Error
(GMMSE) [11] detector. Three detection schemes with sphere
decoding are also tested. The Sphere Decoder A is the optimum
detection scheme, whereas Sphere Decoders B and C include
the projection described in section IV. Sphere decoding is
performed in dimension 2K = 64 for scheme B and in reduced
dimension N for scheme C. For both schemes, we chose αk = 0
for k = 1,…,2K. The Bit Error Rate (BER) averaged over all
users is drawn versus the signal-to-noise ratio. The optimum
multiuser performance is very close to the single-user one. The
improvement with respect to multiuser GMMSE detection is
1.5 dB for a BER equal to 10-3. The gap with MMSEC and PIC
detection schemes is even higher. Both simplifications of the
sphere decoding in versions B and C have no impact on
performance even with the chosen αk values, which maximise
the number of projections.

Fig. 6 shows the signal-to-noise ratio (SNR) required to
obtain an average BER equal to 10-3 versus the number of users.
Sphere Decoder A is the optimum detector, whereas Sphere
Decoder C includes projection on the lattice constellation and
sphere decoding in the reduced dimension lattice (αk = 0 for
k = 1,…,2K). The gap in performance between optimum
multiuser detection and the single user bound increases with the
system load. This degradation equals 3 dB for 64 users (full-
load), whereas the degradation of GMMSE equals 8.7 dB. The
performance loss due to the restriction of sphere decoding to
lattice Λ’ is negligible with up to 56 users. Beyond this value,
the performance degradation produced by the simplification
sub-optimality grows sharply. However, the Sphere Decoder C
performance still remains better than the GMMSE
performance. GMMSE and Sphere Decoder C have same
performance for full load, but intermediate performance results,
closer to the optimum Sphere Decoder A, may be obtained for
Sphere Decoder C by raising αk values at the cost of a
complexity increase.

Finally, simulations have shown that, with 48 users, the
complexity of Sphere Decoder C was 14 times lower than the
complexity of Sphere Decoder A at a SNR equal to 12 dB, for a
negligible performance loss. It is worth pointing out that, with a

full-loaded system employing 16-QAM modulation, an
exhaustive ML search [2] would have required the computation
of 2256 metrics to detect each vector b(i).

VI. CONCLUSIONS

We studied and simplified a low complexity ML multiuser
detection for MC-CDMA systems based on their lattice
representation. A lattice decoder is applied to optimally detect
all users. Its complexity, independent of the modulation size
and growing polynomially with the number of users, allows us
to reach performance limits even for high loads and large
modulations. The proposed simplifications through orthogonal
projection of the received point further reduce the complexity
for noisy received signals. No performance loss is observed for
a 87% load, as compared to optimum detection. For higher
loads, a performance degradation appears, which remains
smaller than the degradation observed with the GMMSE
detector.
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