
Abstract--Reconfiguration, dynamic or static, partial or com-
plete is an essential part of software radio technology.
Thanks to it, systems can be designed for change and evolu-
tion. In a sense "change" becomes part of the mainstream
system operation. In this paper issues relating to the required
device-level support will be covered. Device level support
implies appropriate hardware and software architectures as
well as design approaches accounting from one hand for the
supported reconfiguration scenarios and from the other for
the device specific constraints. We have opted for a custom-
ized and thus lightweight component-based approach using
as guidelines a typical software-upgrade scenario for "bug-
fixing" and device performance enhancement.

I. INTRODUCTION

Reconfiguration, dynamic/static, partial/complete is an
essential part of software radio technology [1]. Thanks to
it systems are designed for change and evolution. In other
words "change" becomes part of the mainstream system
operation. Recent work in European Union R&D projects
(i.e. the TRUST, CAST projects), the SDR Forum and
lately WWRF, clearly shows that the concept of reconfigu-
ration especially in the context of mobile cellular networks
is a complicated business. Reconfiguration still raises
questions on the required system-level support both at the
reconfigured devices and at the network side [2].
Over the past decade previous work has concretely dem-
onstrated the technical feasibility of the Software Defined
Radio approach in the design of radio communications
equipment. The project SpeakEasy was a turning point.
This previous research and experimentation has resulted in
a deep understanding of the SWR technology and its po-
tential applications. Initially effort has mainly focused on
issues relating to the area of increasingly software imple-
mentation. The advantages of this approach are numerous.
In addition, the flexibility of increasingly software imple-
mentations offers potential advantages especially when
the radio equipment is considered as part of a network as
is the case in cellular mobile radio networks. This poten-
tial can be concretely exploited through equipment recon-
figuration. In the evolution path towards and beyond 4G
this potential flexibility can be useful in many technically
challenging as well as commercially attractive use sce-
narios. Moving towards more cognitive (i.e. intelligent)
radios [3] the WWRF vision indicates that in 4G SWR
technology will play a key role. This is because in future

networks (or network of networks) access transparency
for the user, service quality and network management
optimization will necessitate to consider reconfiguration as
part of the mainstream system operation.
In this paper we shall attempt to analyze and discuss the
software radio issues relating to reconfiguration and more
specifically the required device-level support. The rest of
the paper is organized as follows. First a brief overview
work related to reconfiguration will be given. Next, the
hardware platform we use for experimentation and
prototyping will be described. On top of this reconfigu-
rable architecture a component based design approach is
employed to develop the needed reconfiguration mecha-
nisms. Our approach can be tailored to handle various
types reconfiguration scenarios necessitating more or less
network involvement. Several case studies undertaken by
our laboratory will also be described. Finally, some con-
clusions will be drawn.

II. PREVIOUS WORK AND A PLAUSIBLE ROADMAP

In this section a rapid overview of software radio literature
related to reconfiguration is given. Space limitations do
not permit to be more exhaustive in our review.

A. Previous Work

[4] gives an overview of Japanese R&D in SWR. For
reconfiguration the main application targets is multi-mode
and multi-service operation as well as remote upgrades for
performance enhancement and bug-fixing. Depending on
the reconfiguration type, reconfigurability has to be de-
signed in both the physical and higher layers. The interest
in Japan for SWR stems from the assessment that in the
4G era 3G will coexist with 4G to ensure coverage in
urban and rural areas respectively. Users will require
greater transparency for access as well as greater service
integration; this is the single terminal trend. In addition
the different backbone networks should be able to cooper-
ate. The final goal is, thanks to the reconfiguration capa-
bilities, to offer the user what is called in the paper best
communication; best in terms of quality, price, coverage.
In [5] a scheme for a parameter controlled reconfiguration
and a prototype is presented. This scheme targets multi-
mode and by extension multi-service terminal operation
based on a common hardware platform. The baseband

Apostolos A. Kountouris, Christophe Moy

Mitsubishi Electric, ITE-TCL
Rennes, FRANCE

RECONFIGURATION IN SOFTWARE RADIO SYSTEMS

functional blocks in the transceiver chain are created so
that common aspects in the different modes are factored
by functional block parametrization. Some parameters
control the specific ways that blocks can be connected or
by-passed. In a sense the software architecture is static
since the software for all modes is resident at all times.
The mode of operation is selected by downloading the
specific parameter values for each air-interface. Though
flexibility is constrained, this approach by virtue of its
simplicity is robust, reliable and can provide for fast mode
switching.
In [6], [7] the terminal design approach of project CAST
is presented; it intends to give terminals more flexibility
by making future extensions possible. In this approach the
decisions on the system flexibility are transferred from
design-time to run-time. Two elements are basic. First, a
modeling of both hardwired and software functions as well
as logical and physical connections by means of object
oriented techniques (UML); second, hardware and system
support for the dynamic instantiation, by means of a re-
source controller (RSC), of signal processing chains on the
available hardware. The proposed target architecture com-
bines Java technology to DSPs and FPGAs and hopes to
provide for partial and complete system reconfiguration.
In [8] Moessner et al. describe a complete network-wide
architecture framework to support three typical reconfigu-
ration scenarios in a mobile cellular network. These sce-
narios are terminal boot, multi-mode operation and soft-
ware upgrades. This architecture aims to support partial or
full reconfiguration of all protocol layers as needed, con-
trol and management of the reconfiguration process, and
finally, control and monitoring of the network nodes in
respect to their configuration that may change over time.
The following elements are described: (i) the terminal
software architecture, (ii) the network entities for recon-
figuration control. A CORBA based solution is suggested
for realizing a configuration software bus within the ter-
minal to connect the two terminal functional parts i.e.
configuration and radio related parts.
In [9] the approach taken by the EU project TRUST is
presented and a thorough analysis of the reconfiguration
problem is given helping to grasp its high complexity.
Finally, in [10], [11] both papers present algorithms and
techniques for the "blind" identification of the air-interface
standard/modulation by a receiver. Such schemes will
permit the terminals to become more intelligent and thus
more independent so remove from the network both the
responsibility and the workload for reconfiguration (i.e.
processing and messaging).

B. A Plausible Deployment Roadmap

From the above discussion the complexity of the general
reconfiguration problem becomes evident. Different sce-
narios necessitate different types of reconfiguration, par-

tial or total, static or dynamic, with or without network
implication. Furthermore, the way reconfiguration capa-
bilities will be deployed in the future is not yet completely
known. More experimentation is needed to help standard
bodies, regulation authorities and business actors, define
some kind of deployment roadmap. Past experience shows
that technologies evolve from simple towards more com-
plex applications and on a need basis. The scenarios on
software upgrades for bug-fixing and performance en-
hancement as well as algorithm dynamic change (i.e. algo-
rithm diversity) within a single mode of operation will be
deployed first. These schemes permit download and recon-
figuration signaling through logical/physical channels
existing within the mode of operation. Next will come
simple robust schemes for multi-mode/multi-service op-
eration without or with minimal network implication.
Alternative uplink air-interfaces could be used whenever a
mode of operation disposes only of a downlink, e.g. DAB.
During this period device reconfiguration mechanisms will
mature, a higher reliability of the reconfiguration proc-
esses will be attained and regulation issues will become
more clear. At the same time the move towards 4G will
advance network interoperability. This fact will push for-
ward software radio applications for dynamic mode
switching under network control. This will enable dynamic
spectrum and network resource management, more intelli-
gent air-interface selection for "best" communication and
service integration. Progress in the domain identification
algorithms will contribute in making the reconfigurable
radios more independent and will help to lower the impact
of reconfiguration on the network.
In any case the first step will be to design devices (both
terminals and basestations) to support the required recon-
figuration scenarios. As [6], [8] and [9] show, this implies
new approaches in hardware organization, software archi-
tecture and reconfiguration interfaces.

III. A SWR EXPERIMENTATION PLATFORM

The hardware platform used for our experimentation in
software radios and reconfiguration of the radio operation
is shown in FIG. 1. A quad TIC6201 DSP processing
board interfaces to the analog world through mezzanine
cards for A/D, D/A conversion. These cards include by-
passable digital frequency translation components for
down/up-conversion (DDC/DUC). Most of the operation
parameters are under software control through well de-
fined APIs and hardware interfaces. The platform disposes
of a fast ethernet connection and has a bi-directional R/T
data streaming interface as well as a separate interface
more appropriate for control signaling. Through these
interfaces remote hosts can interact with the platform both
for development and in the context of demonstration ap-
plications. In our demonstrations the MATLAB environ-
ment running on a host is connected to the DSP platform

for R/T application data visualization and application
control. This setup effectively permits to study and dem-
onstrate different types of reconfiguration scenarios and
the interactions of the various entities in a cellular network
when air-interface reconfiguration occurs.

FIG. 1: MERLIN - A SWR experimentation hardware platform

As it will be explained later on, the platform resources are
represented in the software domain by software abstrac-
tions acting as components. In this way application soft-
ware and platform hardware are modeled in a uniform
manner. Though we currently use available technology
(processors, A/D/A converters) we concentrate in working
out solutions to system-level problems anticipating the
rapid evolution in these technologies.

IV. COMPONENT BASED DESIGN

In this section a component based approach will be dis-
cussed. Components have been used in the software engi-
neering community for quite sometime. A component
based approach is to be considered as an extension and
complement to the object oriented approach. Components
are a design approach to enforce and achieve reuse (Meyer
[12]). In a wider sense components are also the means to
achieve system extensibility and evolutivity after deploy-
ment (Szyperski [12]). For a system, extensibility refers to
the addition to new elements to the existing ones and
evolutivity to the replacement of old ones by new ones.
These are precisely the goals of reconfigurability and
reconfiguration in software radios. More details on com-
ponents can be found in [12], [13].

A. Components, Composition and Configurations

A component can be defined as a completely encapsulated
behavior representing a unit of change. Change may occur
when the system is operating (hot change) or when it is
stopped. Change has to be supported by some means of
dynamic linking and late binding. Though basic object
oriented design concepts (e.g. encapsulation/information
hiding) apply to component design as well, a component is
not necessarily a class, it can be a collection of tightly
coupled peer classes. With adequate rules, discipline and
some basic system support, C language can be used to

build components though using some OO language will
certainly help. Programming practices allowed by many
OO languages have to be avoided (here is where discipline
is capital). Examples are the use of global variables (com-
promise encapsulation) and inheritance (compromises
extensibility and evolutivity).
Components imply composition which is a recursive op-
eration. Through composition more complex components
are built from simpler ones. The full system may be con-
sidered as the top-level component. Here configuration
enters into play. Webster's defines configuration as:
"...something (as a figure, contour, pattern, or apparatus)
that results from a particular arrangement of parts or
components...". For our purposes we interpret this defini-
tion to say that a configuration gives a static view of the
system's structural and functional aspects which define the
system operation. Structural aspects relate to the intercon-
nection of the various system components.
Re-configuration is the process of changing a system's
configuration by modifying either its structure or the func-
tional aspect of one or more of its components or by
changing both structure and function at the same time. As
already stated this is what components offer: extensibility
and evolutivity.
At a first time in our work we consider the simple case that
structure (component interfaces and interconnections) will
not change and that change will concern the algorithms
that implement the component behaviors. Extensions to
handle more general reconfiguration cases are envisioned.

B. Configuration and Configuration Data

We make the distinction between configuration and con-
figuration data. A configuration describes a system state
of affairs while the configuration data is a machine repre-
sentation of that state. Assuming that a configuration
change does not modify the system structure, i.e. how the
system components are interconnected, the configuration
data may consist of a combination of the following ele-
ments:

- parameter values for each hardware and software com-
ponent with some degree of genericity in its design;

- state variable initial values for each software compo-
nent whose process is not stateless;

- binary code data representing the implementation of
software component functions and binary data bit-
streams representing hardware component implemen-
tations on reconfigurable hardware (e.g. SRAM-based
FPGA); these account for the reconfigurability offered
at the chip level;

When also structure is allowed to change via re-
configuration, the configuration data must also include a
machine representation of component interconnection
information as well as execution scheduling information.
Configuration data stored using an explicit storage format

form configuration records that can be further structured
as a configuration database. The term database implies
some form of indexing. In our case the index key consists
of a configuration identifier unique for each configuration.
It should be noted that unique component identification is
a feature of current component frameworks. The sup-
ported configurations is the set of all configurations for
which there is a record in the configuration database.
Thanks to this database, references can be obtained to the
entire data collection or individual parts of it making it
easy to access either the entire system configuration in-
formation or the configuration information of specific sub-
systems, or individual components. This is the work of the
configuration manager described next.

C. Reference Architecture

Our reference architecture is shown in FIG. 2. It is generic
enough to represent the basic reconfiguration architecture
elements and their interaction. It also provides for future
evolution by representing the cases that reconfiguration
control and reconfiguration data will be distributed across
a network. The reconfigurable transceiver software
consists mainly of the following software entities: the
transceiver (TRx) that implements the signal processing
tasks and the configuration manager (CMan) that is
responsible for the static or dynamic configuration (and re-
configuration) of the system.

RC_ctrl
Ch. Estim

LocalRemote

A/D stage

RF stage

CMan
Config. Manager

H
W

In
te

rf
ac

es

TRx
DSP Transceiver

higher layers

ctrl I/F

I/
F

I/
F

Software

Hardware

A
ct

iv
e

C
on

fi
g.

Config.
command I/F

CSt
Config. Store

LocalRemote

FIG. 2: Reference architecture for reconfigurable radio devices

Of importance are the control interfaces (I/F) presented to
the configuration manager (CMan) by the software and
hardware (A/D, RF) components allowing CMan to
control their configuration related aspects. The CMan is a
hierarchical entity distributed in the system. In an a sense
reconfiguration is a recursive process starting at the top-
level component and propagating down to the leaf
components. Each component is responsible for its own
re-configuration and is sensitive to only a part of the
configuration data. For on-line re-configuration, special
sequencing and synchronization is needed to control how
configuration data propagates through the system and thus
preserve consistency.
Finally, depending on the case, the reconfiguration
controller (RC_ctrl) and the configuration store (CSt)

may be distributed entities in the sense that processing
intelligence and the associated data may be distributed
across several physical entities. Consequently specific
communication paths are implied. For instance this may be
the case in a cellular network where terminal function
depends on decisions taken at the network side, i.e. the
device is under network control.
In this case these distributed entities have a remote and a
local part in respect to the terminal equipment. The local
part acts as a proxy for the remote part. When the device,
from the standpoint of (re-)configuration, is completely
independent the remote parts disappear. In this case the
reconfiguration decision making and deployment are
performed locally using locally stored configuration data.

D. The Configuration Cache

At this point it is useful to describe into more detail how
the configuration data is organized and as well as the
mechanisms that govern access to this data. The configu-
ration store, CSt, defines the following: how configura-
tions are stored, where configurations are stored, and how
the configuration data are accessed.
We chose to organize the CSt as a 3-level cache (i.e. a
configuration cache). The first level (L-CSt1, L standing
for local) corresponds to configurations stored in execu-
tion memory (processor internal memory). These configu-
rations are in a sense pre-installed and ready for execution
after some initialization. Switching between such configu-
rations does not impose significant overhead delay since it
only necessitates diffusing parameter values to the con-
cerned components and resolving pointer references of
software component functions. The second level (L-CSt2)
corresponds to configurations stored in secondary (proces-
sor external) memory. Switching to these configurations
necessitates first bringing the configuration data into exe-
cution memory (the 1-st level) using some data transfer
mechanism (e.g. background DMA). The transferred data
replaces some other 1-st level configuration. Switching
then continues as previously described.
The third level (R-CSt, R stands for remote) corresponds
to configurations stored at some remote site. Such con-
figurations can be transferred either directly to the 1-st
level if a reconfiguration was requested or to the 2-nd
level if only an update of the locally stored configurations
is requested. This transfer requires the establishment of a
communication link (wireless or not) based on some trans-
fer protocol that guarantees error-free data delivery.

E. Implementation Aspects

Existing component infrastructures, like for example Java
and Java Beans, due to their genericity are quite heavy-
weight; they offer a lot more capabilities than we actually
need at the expense of system resources. For implementa-

tion we were inspired by the ideas developed by Stewart in
[14] namely the port based object (PBO) abstraction. A
port based object is a component combining the following
elements: (i) a context independent I/O interface (ports),
(ii) an object which is viewed as an abstract data type
offering encapsulation and (iii) a process that implements
the component behavior. This process is represented by a
finite state machine and according to its state the appropri-
ate object methods are called. Replacement independence
at the algorithm level is the byproduct of object encapsu-
lation and the context independent I/O interface. In addi-
tion to the PBO abstraction the port-based framework
offers a basic and uniform execution environment for both
preemptive and non-preemptive implementations.
The implementation approach of [14] being specific to a
domain i.e. reconfigurable robots, uses a constrained type
of components (port-based objects) and so it has certain
restrictions in terms of the reconfiguration capabilities
sought in software radios. Changing the configuration
constants of generic components readily implements the
parameter-controlled type of reconfiguration. In addition,
replacement independence at the algorithm level allows
for software upgrades and bug-fixing scenarios provided
that the upgrades influence only the component internals
and they do not have any type of structural impact to the
rest of the system.
Structural impact can be as simple as requiring an extra
input port for the new algorithm to work, or as complex as
adding/removing components requiring both component
interconnection and execution scheduling modifications.
The port-based implementation model can be easily ex-
tended to cope with such structural impact inherent in
other software radio reconfiguration scenarios. One exten-
sion consists in implementing I/O port interfaces as ob-
jects where ports can be dynamically added/removed and
connections between old components and new ones can be
dynamically created. A second extension represents the
component scheduler as an object where processes can be
added and removed dynamically. Hence, in a system con-
structed as a hierarchy of components, the system sched-
uler is viewed as a hierarchy of component schedulers.
Currently we stick to the constrained implementation
whose basic premises are defined in [14] by adding the
needed support for on-the-fly reconfiguration while keep-
ing the needed infrastructure overhead low. For this we
have opted for a C based implementation without any
RTOS support. Components can be software or hardware.
Hardware components are represented in the software
domain by means of abstraction components providing a
componentized interface to the actual hardware.

V. CASE STUDIES

In the past two years, using the software radio platform
described earlier on, we carried out in our laboratory sev-

eral experiments covering increasingly software receiver
implementations for various standards. Lately we shifted
our focus on reconfiguration applications.
Our first experimentation consisted in building a full sim-
plified UMTS-FDD downlink (from IF to BB) including
the RAKE receiver and turbo decoder blocks. All func-
tions including carrier recovery, timing adjustment and
frequency translation from IF to BB, were implemented in
software. This case study served mainly to benchmark the
capabilities of our platform on a demanding air-interface.
The second experiment consisted in implementing entirely
in software the modem for various mobile communication
standards namely GMSK, 3pi/8 offset PSK, QPSK and
Frequency Hopping-FSK for GSM, EDGE, UMTS and
Bluetooth respectively. The goal was to demonstrate the
single platform implementation of a wide panel of modu-
lation schemes for standards that will most probably be
present in the multi-mode terminals and basestations of the
future. In this experiment reconfiguration granularity is
coarse and the reconfiguration process consists of a net-
work initiated switch command triggering complete recon-
figuration by paging-in the required application binary file
(image) from external processor memory using DMA or
the host disk via an ethernet connection. More details and
results can be found in [15].
A third experiment, partly conducted as student internship
projects, consisted in fully implementing in software re-
ceivers for broadcast AM/FM. In the FM case three differ-
ent demodulation algorithms were implemented. These
alternatives permitted to automatically switch from one
algorithm to another based on a simple SNR based crite-
rion. This demonstrates the possibilities of trading-off
processor cycles (thus power) for better performance un-
der varying reception conditions. In addition changing
demodulation algorithms necessitates principally the re-
configuration of the demodulator component block which
in turns necessitates the reconfiguration of hardware com-
ponents by changing their parameter values. For instance,
reconfiguring from a real to a complex IQ demodulation
scheme necessitates reconfiguring the Rx module from
real to complex operation, changing the sampling fre-
quency and the data format. This experiment revealed not
only the potential of algorithm diversity in service quality
enhancement but also the subtleties of configuration de-
pendencies and consistency. Reconfiguring a single com-
ponent while preserving operation consistency necessitates
reconfiguring other system components.
Finally, the "bug-fixing" scenario was further studied in
the case of an EDGE receiver. The sampling time adjust-
ment function was implemented entirely in the software
domain by means of an interpolation process combining
pulse shaping and polyphase filtering. This function was
componentized for replacement independence. System
software provided for remote binary code downloading
from a remote host via a TCP/IP connection. A bug was

simulated in the timing adjustment function and was sub-
sequently corrected by downloading only the binary code
corresponding to this function. Complete knowledge of the
target system memory map dispensed us with the need for
dynamic linking facilities. Reconfiguration was either
interactive (remote operation and maintenance) or auto-
matic after stopping the system. We also tested the case of
reconfiguration without stopping the system by back-
ground downloading into memory locations provided for
this effect. Interference with the system was minimal and
the transition (switch) to the new operation was seamless.
This experiment increased the interest for reconfiguration
scenarios where transition from a current configuration to
a new one could be implemented incrementally.
An interesting concept relevant to software radios is the
concept of algorithm diversity. An example is given by
Laster in [16] for the case of GMSK demodulation for
which different algorithms exist. Instead of using a unique
demodulation algorithm yielding good performance on
average, thanks to software radio and reconfiguration
more flexible schemes can be envisioned. In the future we
shall experiment with this concept because it corresponds
to one of the interesting and short term applications of
software radio reconfiguration in a cellular network.

VI. CONCLUSIONS

Reconfiguration in software radios may have different
manifestations depending on the targeted use-case sce-
narios. In its most general form it is a quite complex
problem. To navigate through the problem space we had
to define typical use-case scenarios and a plausible road-
map for the deployment of reconfiguration capabilities.
We chose to first address the issues relating to the design
of radio equipment supporting reconfiguration. Such plat-
form support is a basic point and of great interest from the
standpoint of equipment manufacturers. A component
based design approach for the representation of hardware
platform capabilities and software architecture is estimated
as necessary.
We hope in the future to be able to treat within a more
formal framework issues relating to the compositional
aspects of component based architectures. Finally, an
important open issue is the required network-wide archi-
tecture and simultaneous management of reconfiguration
and inter-network handoff. Resolving such questions will
necessitate close collaboration between all implicated
actors, manufacturers, operators, regulators and standard
bodies. Experimentation will provide valuable feedback
for standardization.

VII. ACKNOWLEDGMENTS

We would like to thank Trium R&D for supporting our
investigation of reconfiguration aspects of software radio.

VIII. REFERENCES

[1] W. Tuttlebee, Software Radio Technology: A Euro-
pean Perspective, IEEE Comm. Mag., Feb. 1999.

[2] J. Pereira, Re-Defining Software (Defined) Radio: Re-
Configurable Radio Systems and Networks, IEICE
Trans. on Comm., vol. E83-B, no. 6 pp. 1174, 2000.

[3] J. Mitola III, G.Q. Maguire Jr.., Cognitive Radio:
Making Software Radios more Personal, IEEE Pers.
Communications , vol. 6, no. 4, Aug. 1999, pp. 13-18.

[4] N. Nakajima, R. Kohno, S. Kubota, Research and
Developments of Software-Defined Radio Technolo-
gies in Japan, IEEE Communications Magazine , vol.
39, no. 8 , Aug. 2001, pp. 146 -155.

[5] H. Harada, Y. Kamio, M. Fujise, Multimode Software
Radio System by Parameter Controlled and Tele-
communication Component Block Embedded Digital
Signal Processing Hardware, IEICE Trans. on
Communications, vol..E83-B, no.6, pp.1217.

[6] D. Lund, B. Honary, Design and Maintenance of
Physical Processing for Reconfligurable Radio Sys-
tems, 12th PIMRC'01, v. 1, pp. 96-99, Sept. 2001.

[7] D. Lund, B. Honary, K. Madani, Characterising
Software Control of the Physical Reconfigurable Ra-
dio Subsystem, in Proc. IST Mobile Communications
Summit 2001, Spain, Sept. 2001.

[8] K. Moessner, S. Gultchev, R. Tafazolli, Software
Defined Radio Reconfiguration Management, in Proc.
12th PIMRC'01, vol. 1, pp. 91-95, USA, Sept. 2001.

[9] M. Mehta, N. Drew, G. Vardoulias, N. Greco, C.
Niedermeier, Reconfigurable Terminals: An Over-
view of Architectural Solutions, IEEE Comm. Maga-
zine , vol. 39, no. 8 , Aug. 2001, pp. 82 -89.

[10] C. Roland, J. Palicot, A Blind Recognition of the
Transmitted, Signal for a Self- Adaptive Re- Config-
urable Terminal, in Proc. IST Mobile Communica-
tions Summit, Spain, Sept. 2001.

[11] H. Ishii, S. Kawamura, T. Suzuki, M. Kuroda, H.
Hosoya, H. Fujishima, An Adaptive Receiver based
on Software Defined Radio Techniques, in Proc. 12th

PIMRC, vol. 2, pp. 120-124, USA, Sep. 2001.
[12] B. Meyer, C. Szyperski, Software Design Magazine:

Beyond Objects column, http://www.sdmagazine.com
[13] C. Szyperski, Component Software, Beyond Object-

Oriented Programming, Addison-Wesley, 1998.
[14] D.B. Stewart, R.A. Volpe, P.K. Khosla, Design of

Dynamically Reconfigurable Real-Time Software us-
ing Port-based Objects, IEEE Trans. on Soft. Engi-
neering, Vol. 23, Iss. 12 , Dec. 1997, pp. 759 -776.

[15] C. Moy, A. Kountouris, L. Rambaud, P. LeCorre, A
Reconfigurable Radio Case Study: A Software based
Multi-standard Transceiver, proc. VTC Fall, 2001.

[16] J.D. Laster, Robust GMSK Demodulation Using
Demodulator Diversity and BER, Ph.D. Thesis,
Virginia Tech, 1997.

