
INTEGRATION OF MPEG-4 VIDEO TOOLS ONTO
MULTI-DSP ARCHITECTURES USING AVSYNDEX

FAST PROTOTYPING METHODOLOGY
Jean-François NEZAN, Mickaël RAULET, Olivier DEFORGES

IETR / INSA Rennes
CNRS UMR 6164

20, av des Buttes de Coëmes, CS 14315
35043 Rennes Cedex, France

Contact : jnezan@insa-rennes.fr
Phone number : +33/0 223 238 459 Fax : +33/0 223 238 262

ABSTRACT
Mpeg-4 is a response to the growing need for coding method that can facilitate access to

visual objects in natural and synthetic moving pictures. Future real time audio-visual
applications using Mpeg-4 will have very important time constraints, that can be achieved
with the use of several calculation units. Sequential software solutions actually developed for
single processors can hardly be projected onto multiprocessor architectures, leading to extra
load of source code and calculations, but also to a sub-optimal use of the architecture
parallelism. A functional data flow description of the application is then a well suited front-
end for optimal multi-components implementation. This paper presents an Mpeg-4 decoder
with such description formalism, allowing incremental building, and easy handing-over up to
date of the algorithms. Furthermore, we show that the use of our AVSynDEx methodology
enables its optimized implementation onto a multi-C6X platform.

1. INTRODUCTION
The Moving Picture Experts Group (MPEG) [2] is the ISO/IEC working group in

charge with the development of compression, decompression, treatment and
representation of both video and audio documents. Mpeg gives a framework for those
applications. Software solutions based on standard monoprocessor architectures are able
to handle applications such as data storage or audio document manipulation. However,
Mpeg-4 tools provide solutions for many other real time applications manipulating
sounds, images and video from both natural and synthetic origin. Such applications,
especially those including interactions with users, need very high computational
performances, involving the use of dedicated technology.

Nowadays, a single chip including all Mpeg-4 tools can’t be realized because of their
high complexity [3,4]. Some are developed to accelerate repetitive calculations like DCT
or complete image coding in special Mpeg-2 cases. Furthermore, an application will have
to switch between these tools, involving the use of programmable targets. So their
integration into platforms requires many specialized people, especially because platforms
created are mixed, made up of standard programmable processors (software part) and
those chips (specific hardware part). Such platforms are usually dedicated to a single
application. We present here the AVSynDEx methodology (concatenation of
AVS+SynDEx) aiming to the fast prototyping of multiprocessor platforms which could
reach those high performances, and Mpeg-4 real time decoding results onto a multi-C6X
architecture.

 1

mailto:jnezan@insa-rennes.fr

The front-end of AVSynDEx [1] is the AVS object-oriented visual programming
interface for the description of the algorithm data flow graph. The only solutions actually
proposed are sequential software programs that can’t be projected easily onto
multiprocessor architectures, whereas such functional data flow graphs are better suitable.
The behavioral description is validated thanks to AVS visualization tools and is then
automatically transformed to be compliant with Syndex entrance, a CAD software which
evaluates and generates the tasks scheduling over the target multi-DSP architecture. The
functional description of the application can be projected onto many multiprocessor
platforms.

One main advantage is that AVSynDEx is based on the use of available and efficient
CAD tools established along the design process so that most of the implementation tasks
become self-running. Only a signal-processing contributor is needed, all the other
specialized manual tasks being transparent in this prototyping methodology, so that the
implementation time is reduced. The high level development allows a maximal adaptation
between the Mpeg-4 standard and the application, and also an easy handing-over up to
date of the algorithms. Tasks are automatically shared between processors, leading to high
computational performances. Furthermore, a same programmable platform can be used
for several applications, increasing the platform profitability.

This paper is organized as follows : in Section 2, Mpeg-4 specificity is studied. In
section 3, we describe the AVSynDEx methodology. Results of an Mpeg-4 decoding
process implementation are developed in section 4. Finally, conclusions and perspectives
are given in section 5.

2. MPEG-4 CODING OF AUDIO-VISUAL OBJECTS

2.1 Generalities

Since 1988, three standards have been
developed : Mpeg-1, Mpeg-2 and Mpeg-4 [2].
This later builds on the proven success of
three fields : digital television, interactive
graphics applications (synthetic content), and
interactive multimedia (World Wide Web,
distribution of and access to content). MPEG-
4 provides the standardized technological
elements enabling the integration of the
production, distribution and content access
paradigms of the three fields. Mpeg-4
provides a toolbox for next generation
multimedia applications.

Mpeg-4 provides the way to represent
units of aural, visual or audiovisual content,
called "media objects". These media objects
can be of natural or synthetic origin, this
means they could be recorded with a camera
or microphone, or generated with a computer.

Fig 1 : Mpeg-4 audiovisual scene

example

 2

Audiovisual scenes composed of these objects can be created and manipulated. Mpeg-4
describes the composition of these objects to create audiovisual scenes (Fig 1). Media
objects associated data are multiplexed and synchronized in the bitstream, so that they can
be transported over network channels providing a QoS appropriate for the nature of the
specific media objects. Another important MPEG-4 functionality is to provide interaction
with the audiovisual scene generated at the receiver’s end.

2.2 Mpeg-4 organization : profiles – levels
Many Mpeg-4 diagrams are defined in the standard according to bit rate, document

complexity, use of the document. The first software programs developed at the moment
try to integrate the most Mpeg-4 services as possible. But for real time applications
especially in an embedded context, this approach is not suitable : resources and
calculations must be minimized to reach higher performances. A methodology enabling to
implement minimum Mpeg-4 services has to be used. Mpeg-4 is developed in this mind
being divided into parts, each of them divided into profiles and levels [2].

A profile is a defined subset of the entire Mpeg bitstream syntax. For instance, a
profile can deal with visual documents, another one with audio documents. In each
profile, it is possible to require a very large variation in the performance of encoders and
decoders depending on the values taken by parameters in the bitstream. In order to deal
with this problem, levels are defined within each profile. A level is a defined set of
constraints imposed on parameters in the bitstream.

By this way, Mpeg standards are intended to be generic, in the sense that they serve a
wide range of applications, bit rates, resolutions, qualities and services. Mpeg-4 is also
divided into parts. The first one is the system part, it defines the framework for integrating
the natural and synthetic components of complex multimedia scenes. The Systems level
shall integrate the elementary decoders for media components specified by MPEG-4 other
parts : Audio, Video, Synthetic and Natural Hybrid Coding (SNHC), and Intellectual
Property Management and Protection (IPMP), providing the specification for the parts of
the system related to composition and multiplex.

The developer has to choose a set of those profile@levels but not the whole standard
according to the application’s functionalities and complexity. In the meantime, the way to
process each step is not defined in the standard, only global decoding schemes are
normalized. So compression diagrams can be optimized and adapted to the application
(rapidity, code length, resources). The use of Mpeg-4 libraries constituted of modules
interconnected in a functional data flow graph for the description of a specific application
is well suited in this context. A given Mpeg-4 functionality can be handled by several
modules with special specificities. An application functional description with a data flow
graph is then adapted for the Mpeg-4 profile and level organization.

2.3 Mpeg-4 part 4 : conformance testing
Mpeg-4 parts 1 (system), 2 (visual) and 3 (audio) specify a multiplex structure and

coded representations of audio-visual information. The flexibility is obtained by including
parameters in the bitstream that define the characteristics of coded bitstreams, specifying
for example the picture size or the audio sampling frequency. The fourth Mpeg-4 part
specifies how tests can be designed to verify whether bitstreams and decoders meet the
Mpeg-4 requirements. The conformance testing part allows to test each subset of the

 3

mailto:profile@levels

standard in a coding or a decoding application. a Mpeg-4 data flow graph application is
divided in functional blocks that can be tested independently thanks to adapted
conformance testing. A complete application development can be done in an incremental
way, checking in several conformance points if results fit to Mpeg-4 requirements.

So Mpeg-4 does not only describe coding and decoding processes, but it gives also
many application development tools. The AVSynDEx methodology we used in our
development is fully coherent with this Mpeg-4 specificity.

3. AVSYNDEX PROTOTYPING METHODOLOGY

3.1 AVS : Advanced Visual System
AVS [5] is a multi-platform, component-based software environment building

application with interactive visualization and graphic features. AVS employs an
innovative object-oriented visual programming interface to create, modify, and connect
application components.

Fig 2 : AVS development environment

The top section of the AVS Network Editor, shown Fig 2, consists of libraries of

objects. The bottom section is the workspace where the user drags and drops objects and
draws connection lines between objects to assemble an application or to create new
objects. Objects are stored in new libraries for future applications. AVS visualization
tools and the error dialog box are used to observe during the calculations. Objects created

 4

are linked to C source code developed, compiled and debugged with Microsoft Visual
C++ tools.

We have developed an semi-automatic translator generating a global SynDEx
description with the data flow graph created with AVS, and “cleaning” the source C
functions in order to get a standard C code.

3.2 SynDEx
SynDEx [6] (SYNchronized Distributed Executive) is a free academic CAD

software system, meaning Synchronized Distributed Execution. It supports the AAA
methodology (Adequation Algorithme Architecture) for distributed processing, which has
been developed in INRIA Rocquencourt, France. The goal of adequation, (French word
meaning an efficient matching) is to find the best matching between an algorithm and an
architecture. The AAA optimization heuristic handles heterogeneous architectures and
inter-processor communications.

On the one hand, SynDEx uses a material graph, which models the multiprocessor
architecture. Fig 3 shows an architecture made of two processors (“U1” and “U2”)
connected each other with a single TCP link (called “TCP”). On the other hand, a
software graph describes the dataflow graph. A software graph is constituted of
interconnected vertices. There are five types of vertex: constant, sensor (input of the
algorithm), actuator (output of the algorithm), memory and operation. Only an operation
may contain a hierarchy, that is to say it, in turn, may be specified as a graph of other
constants, sensors, actuators, memories, operations, and moreover input and output ports.
The algorithm graph can also contain condition nodes. By this way, complete algorithm
functional descriptions can be modeled.

Fig 3 : SynDEx description graphs and the resulting timing graph

SynDEx generates an executive into several source files, one for each processor of
the architecture, and another one for automating the architecture specific compilation
chain. The code generated can insert chronometrical reports for heuristic optimization or
not, for the final implementation. The main advantage of Syndex is to avoid the use of

 5

operating system like 3L diamond product, implementing the minimum custom-built
static executive needed for a given application. Spatial and temporal additional costs are
minimized, whereas the order of algorithm tasks is guaranteed and locking is avoided.

Finally, SynDEx carries out the placement and partitioning, according to the time
spent for data transfers between processors, and for each task of the algorithm. The result
can be visualized and analyzed thanks to the timing diagram generated by SynDEx.

SynDEx is able to handle different processors: Analog Device ADSP 21060,
SHARC, Motorola MPC 555 et MC 68332, Intel i80x86 et i8096, Unix/Linux
workstations, Texas Instruments TMS320C40. This latter was very used, but its
computational performance is no longer efficient enough for new applications. From 150
to 600 Mhz clock rates, C6X are using VelociTI Advanced Very-Long-Instruction-Word
(VLIW) architecture, in order to supply up to eight 32-bit instructions to the eight
functional units every clock cycle. C6x are high-performance DSPs. We coupled SynDEx
advantages to C6x DSP power to create its SynDEx automatic code generator [7].
Communications are done with multi-channel DMA transfers, maximizing this
parallelism and timing performances.

3.3 AVSynDEx [1]

Fig 4 : AVSynDEx methodology

The starting point of the prototyping process is the functional description of the
application, with the use of AVS (Fig 4). The functional checking, but also software
optimization of modules and applications, are made at an high level, depending on
platform resources and time constraints of the application.

 6

This description is then translated into an input file for Syndex, used in a first step

to determine the time associated with each function. It creates a monoprocessor
implementation with chronometric reports. In the C6x case, reports are done with this one
of the two internal timers. The user can easily copy out these times into the software
SynDEx graph. Then, Syndex generates a real-time distributed and optimised executive,
where chronometrical report are removed, according to the target platform.Several
platform configurations can be simulated (processor type, their number, but also different
media connections).

 The main advantage of this prototyping process is its simplicity, as most of the tasks
realized by the users concern the application description with his conventional
environment. The required knowledge of SynDEx and the loader is limited to simple
operations.

4. MPEG-4 DECODER PROTOTYPING OVER MULTI-C6X DSP
PLATFORM

4.1 Material platform
The chosen material

platform enables the user to obtain a
coherent and modular target
architecture. Our platform is made by
a SUNDANCE motherboard and two
SMT335 TIM modules. The SMT335
TIM (Fig 5) consists of a Texas
Instruments TMS320C6201 running
at 200MHz. Modules are populated
with 512KB of synchronous burst
SRAM and 16MB of synchronous
DRAM, giving a total memory
capacity of 16.5MB.

Fig 5 : Sundance SMT 335 TIM module

A Field Programmable Gate Array (FPGA) is used to manage global bus

accesses and implement six communication ports (20 MB/s). A Field Programmable Gate
Array (FPGA) is used to manage global bus accesses and implement six communication
ports (20 MB/s) and two Sundance Digital Buses (SDB). SDBs are 16-bit data parallel
links achieving high-speed data transfers (200 MB/s each), an important point in regards
with the large quantities of data (images and relative data) needed in video coding.

4.2 Modules and application libraries
We have created video Mpeg-4 texture decoding libraries made of modules and

applications with AVS. Each application is built with modules, which can be involved in
several applications, for instance coding and decoding processes. Each module executes a
C routine like motion estimation, IDCT, inverse quantification. A module can also be
built as a macro, composed of several other modules.

Mpeg-4 natural texture coding tools divide pictures into macroblocks, which are
16x16 of Y channel and the corresponding 8x8's in both U and V (chromatic components

 7

are sub-sampled by two). Mpeg-4 bitstream has to be demultiplexed (Fig 6), giving coded
values for each block of each macroblock of the pictures. Those values are first decoded
using variable length code tables defined in the standard. The resulting one dimensional
data is then converted into a two-dimensional array of coefficients using the appropriate
inverse scan table. The selection of the prediction direction is based on the comparison of
the horizontal and vertical DC gradients around the block to be decoded. This direction is
used for the prediction of AC and DC coefficients. The reconstructed DCT coefficients
are obtained by the mean of the inverse quantization of the two-dimensional array of
coefficients. The IDCT calculation is finally used, given texture blocks for the video
object plane reconstruction.

Fig 6 : Mpeg-4 texture decoding process

The first AVS modules created allow to read and manipulate Mpeg-4 visual
bitstreams. A first module handles the bitstream, finds start codes and separates
configuration information and elementary streams. On the basis of the coded
configuration information, several AVS modules extract mpeg-4 configuration variables.
The names of modules, and configuration variables on AVS libraries match the
description given in Mpeg-4 documents.

Other AVS modules, from both coded elementary streams and configuration
variables, realize the decoding operations : inverse VLC, DC prediction direction, inverse
scan, inverse AC and DC coefficients prediction, inverse quantization and IDCT. Each
module is optimized for the decoding of intra macroblocks, and for a VLIW
implementation : interleaving loops, conditional tests leading to pipeline rupture, dynamic
allocations and file manipulations are avoided. This high level development is made
easier thanks to AVS visualization and debugging tools.

Mpeg-4 algorithm descriptions are given at a block level. So the standard
describes the previous neighboring blocks used in coefficient predictions at a block level
(Fig 7.a). But algorithms have to be repeated for the four luminance blocks and two
chrominance blocks of each macroblock. The functional data flow graph of the decoding
process at the macroblock level, using hierarchy, enables to find parallelism between
those tasks. Indeed, one processor can handle the treatment of chrominance blocks, while
another processor handles luminance blocks for instance. So we defined the adequate
previous neighboring blocks for the prediction at the macroblock level (Fig 7.b).

 8

Fig 7a : previous neighboring blocks

at the block level

Fig 7b : previous neighboring blocks

at the macroblock level

Because of the several prediction schemes, many relative data have to be

memorized for each block and each macroblock. Usually software solutions developed
store all those data for every blocks and every macroblocks. Resulting source codes need
huge resource implementations, whereas the decoding process just need a few of them at a
given time : macroblock relative information storage can be limited at three previous
block lines (one line for each color component) and four previous blocks in the current
line (Ax, Ex, Acb and Acr Fig 7b). This observation leads us to create AVS memorization
modules for an optimized block relative information storage.

Mpeg-4 libraries can be used in all applications with natural intra coding or
decoding textures, that is to say in most Mpeg-4 profiles. Functionalities have been
checked with appropriated bitstreams given in the conformance testing part of the Mpeg-4
standard.

4.3 Monoprocessor implementation
 We first implement the developed modules onto a single C6201 DSP. The code is

automatically generated thanks to the SynDEx code generator. Chronometrical reports are
used to value the time spend for each module. Fig 8 gives the results for decoding
operations at the macroblock level (MacroblockI and Inverse VLC) or block level (the
others). Those results are first chronometrical reports, the C source code was developed
on the AVS environment for the functional verification but can be optimized for C6X [9].

The global decoding process for a QCIF Intra-coded Video Object Plane is then
128,6 ms, including the decoding of the VOL and VOP parameters (1.74 ms).

 9

Functions Times (microsec)
MacroblockI() 6.3
Inverse VLC 340
DC prediction direction 3.5
Inverse scan 9.3
Inverse AC&DC prediction 47.5
Inverse Quant 66.5
Inverse DCT 5.72

Fig 8 : chronometrical reports

4.4 Multi-DSP implementation
Times founded in the monoprocessor implementation are reported in the SynDEx

application description. Syndex finds then the best matching between the algorithm and
our architecture. Fig 9 shows a zoom on the resulting timing graph. We can see the
partition of a single macroblock calculations on our two C6x DSPs. Luminance and
chrominance macroblock operations can be executed separately, X2 and X3 blocks of a
same macroblock (Fig 7) too. For each macroblock, the six IDCT calculations can be
handled at the end of the macroblock treatment.

Fig 9 : Mpeg-4 SynDEx resulting timing graph

The resulting time spent to code a QCIF picture is now 82.93 ms instead of 128,6 ms

for the monoprocessor implementation, that is to say an 1.55 speed up factor. We can
easily see on the timing graph (Fig 9) that DSP2 is waiting for the end of the VLC
calculation performed on the DSP1. With an AVS Inverse VLC data flow graph more

 10

precise, this calculation would have been shared between the two processors leading to a
speed up factor near 2.

In view of the fact that decoding a Predicted Video Object Plane (P-VOP or B-VOP)
is faster than the decoding of an I-VOP, future developments will give higher real time
performances. Texas Instruments C6201 used for the implementation are running at
200MHz, but the code generated can directly be projected onto new C64x DSPs running
at 600 MHz.

5. CONCLUSIONS AND PERSPECTIVES
This paper shows the efficiency of the AVSynDEx methodology for

multiprocessor platforms. Modules developed for the Mpeg-4 decoding application
presented here can be re-used for other Mpeg applications, with the possibility to adapt
them and connect each other at a high level. Functionality of a new application can be
checked with interactive visualization, graphics features and debugging tools provided by
AVS. Next software development will concern the natural and synthetic video coding of
Mpeg-4.

To create a digital image processing line, as this Mpeg-4 application, the whole
process, starting from the AVS input description to the final execution onto the
multiprocessor architecture, is practically automatic. The short implementation time
enables the user to do more modifications at a high description level or to change the final
partitioning. Our global process enables the user to develop complex applications onto a
complex architecture, without any implementation pre-requirements. So, it is quite
architecture independent.

Additional logic is always added between two C6x DSPs for the communication and
is often integrated in a FPGA. The implementation of elementary and regular operations,
especially the IDCT, onto this material part would give higher performances. Since the
methodology we used is coherent with our methodology developed for mixed architecture
(DSP + FPGA) [8], we plan to implement those operations onto the material part of our
platform.

The Sundance platform used can be improved by adding a frame grabber module. A
camera, input for an Mpeg-4 coder, or a monitor, output for a decoder, can be connected
to the multi-DSP platform. The Sundance platform is connected to the PC processor with
a PCI link, like many other multi-DSP platforms. We are studying how to add the PC
processor and the PCI media on the SynDEx architecture graph. The algorithm
implementations will take advantages from standard PC processor performances and
connections : cameras, viewers, user interaction tools, networks but also other multi-DSP
platforms.

Acknowledgments
 The authors wish to thank the following people for their contribution to the
project : Marie Babel (IERT), Yves Sorel (INRIA Rocquencourt). This work has been
partially supported by Mitsubishi Electric ITE-TCL, Rennes, France.

 11

References
[1] V. Fresse, M. Assouil, O. Deforges : Rapid prototyping of image processing onto a

multiprocessor architecture, DSP World ICSPAT, Orlando, Florida, USA, November
1-4 1999.

[2] Signal Processing : Image communication, special Mpeg-4. Published by Elsevier
Science B.V., January 2000.

[3] C. Miro, A. Lafage, Q.L. Nguyen-Phuc, Y. Mathieu, “Hardware Implementation of
Perspective Transformations on Mpeg-4 Video Objects”, Proceedings of SPIE,
Volume 3655, Media Processors 1999, pp. 102-112.

[4] P. Ruetz, P. Tong, D. Bailey, D. A. Luthi, P. H. Ang : a high-performance full motion
video compression chip set. IEEE Trans. Circ And Syst. For Video Technol., vol. 2,
pp. 111-122, June 1992.

[5] International AVS Center, Manchester Visualization Centre,
Manchester Computing, University of Manchester. Available at
http://www.iavsc.org.

[6] C. Lavarenne, Y. Sorel : Specification, performance optimization and executive
generation for real-time embedded multiprocessor application with Syndex , Proc. Of
Real Time Embedded Processing for Space Applications, CNES International
Symposium.

[7] Y. Le Mener, M. Raulet, J-F. Nezan, A. Kountouris, C. Moy : SynDEx executive kernel

development for DSPs TI C6X applied to real time and embedded multiprocessors
architecture. EUropean Symposium (EUSIPCO), Toulouse, France, September 2000.

[8] V. Fresse, O. Déforges, J.F. Nezan : Rapid prototyping for multi-DSP and FPGA
architectures: implementation of digital image processing applications by means of AVSynDEx
The European Association For Signal, Speech and Image Processing (EURASIP) Journal on
Applied Signal Processing, Implementation of DSP and Communication Systems Special
Issue, Oct 2002.

[9] Texas Instruments technical documents: TMS320C6000 programmer’s guide. Ref spru198f.
Available at http://www.dspvillage.ti.com. Feb 01.

 12

http://www.dspvillage.ti.com/

	INTEGRATION OF MPEG-4 VIDEO TOOLS ONTO MULTI-DSP ARCHITECTURES USING AVSYNDEX FAST PROTOTYPING METHODOLOGY
	INTRODUCTION
	MPEG-4 CODING OF AUDIO-VISUAL OBJECTS
	Generalities
	Mpeg-4 organization : profiles – levels
	Mpeg-4 part 4 : conformance testing

	AVSYNDEX PROTOTYPING METHODOLOGY
	AVS : Advanced Visual System
	SynDEx
	AVSynDEx [1]

	MPEG-4 DECODER PROTOTYPING OVER MULTI-C6X DSP PLATFORM
	Material platform
	Modules and application libraries
	Monoprocessor implementation
	
	Inverse VLC
	DC prediction direction

	Multi-DSP implementation

	CONCLUSIONS AND PERSPECTIVES
	Acknowledgments
	References

