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Abstract— Soft output detection for signals transmitted on
linear channels is investigated. A particular emphasis is made for
signal detection on multiple antenna channels. The a posteriori
information at the detector output is evaluated from a shifted
spherical list of point candidates. The spherical list is centered
on the maximum likelihood point, which has the great advantage
of stabilizing the list size. Thus, the sphere radius is selected in
order to control the list size and to cope with the boundaries of the
finite multiple antenna constellation. Our new soft output sphere
decoder is then applied to the computation of constrained channel
capacity and to the iterative detection of a coded transmission.
For example, we achieved a signal-to-noise ratio at 1.25dB from
capacity limit on a 	�
�	 MIMO channel with 16-QAM modulation
and a 4-state rate 1/2 parallel turbo code.

I. INTRODUCTION

In order to improve the data transmission rate over fading
channels, most of recent systems use a set of multiple antennas
[9][15] for transmitting and receiving. Iterative a posteriori
probability (APP) techniques [2][11], such as iterative joint
detection and decoding [3][4], are a judicious choice for high
performance receivers with reasonable complexity. Such tech-
niques require soft-input soft-output detectors and decoders.
Soft-output detection on multiple antenna (MIMO) channels
can be achieved via an exhaustive list as in [3] or a limited
size list of a spherical shape as in [10]. The APP detector
based on an exhaustive list has a relatively large complexity,
exponential in the number of transmit antennas and the number
of bits per modulation symbol. On the contrary, an APP
detector based on a non-exhaustive list is sub-optimal but its
complexity is proportional to the list size. The main weak point
in the spherical list decoder already proposed is the instability
of the list size and the associated problem of sphere radius
selection. In this paper, we propose a new soft-output lattice
decoder applicable to all linear channels including multiple
antennas. Our APP detector starts by applying an accelerated
sphere decoder to find the maximum likelihood (ML) point.
Then, using a double Pohst recursion, it builds a spherical
list centered around the ML point (not the received point!) to
evaluate channel likelihoods. The effective list size is well
controlled and depends on the ML point position and the
channel state.
The paper is organized as follows. The channel model is pre-
sented in section II. Lattice representation of MIMO channels
is given in section III. In section IV, we briefly describe the
accelerated sphere decoder that takes into account the finite
QAM size. In section V, we present the construction of the
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Fig. 1. Transmitter system model.

shifted spherical list for soft output detection. Finally, two
computer simulations are presented in section VI.

II. SYSTEM MODEL AND PARAMETERS

Lattice theory and coding theory are applied to efficiently
encode and decode information in a digital transmission sys-
tem with multiple antennas. The transmitter structure of a bit
interleaved coded modulation (BICM, see [5]) is illustrated in
Fig. 1. The information binary elements are encoded by a rate���

channel code. The coded bits ������� are randomly interleaved
and fed to a � � -QAM mapper. Information is conveyed on
a multiple antenna channel with !#" transmit antennas and
!�$ receive antennas. It is assumed that !#"&%'!�$ throughout
this paper. Channel input and output are linked via the non-
selective Rayleigh fading model:

( %*),+.-0/1%324-5/ (1)

where +6%87 9�:<;�= is an ! "?> ! $ complex matrix, )A@CB ��D
denotes the MIMO channel input, 2E@FB � � the noiseless
channel output, ( @GB � � the MIMO channel output and / is
a white complex Gaussian additive noise with zero mean and
variance � H&I per complex component. The entries 9 :J; of the
channel matrix are complex random variables with a Gaussian
probability distribution of zero mean and unity variance. The
spectral efficiency of the illustrated BICM is

�&� >&KL> !M" bits
per channel use.

III. LATTICE REPRESENTATION OF MIMO CHANNELS

Lattice theory is a powerful mathematical tool to represent
the channel geometrically and help us understand its behavior
in order to design a good modulator and its corresponding
demodulator. Since multi-dimensional QAM constellations are
subsets of N � , we can write )O@PNRQ � D . Let !#ST%A�U!M" denote the
dimension of the real Euclidean space. The equality 2V%A),+
is now extended to the real space W �YX to get

2V%*)[Z]\]2^@_W � X \C)1@_N � X
(2)



Therefore, the MIMO channel output ( % 2 - / is obtained
by perturbing a lattice point 2 with additive white noise / .
A lattice

�
is a discrete subgroup of W � X [7], i.e., it is a N -

module of rank ! S . In (2), the lattice
�

is generated by the
! S > ! S real matrix Z % 7 Z :J;�= which is derived from the
channel matrix + by the following simple relation

Z :<; %
��� 9 :<; � 9 :J;� � 9 :J; � 9 :J;�� (3)

where
� 9 :J; and � 9 :J; denote the real and imaginary part of

9 :J; , respectively. The matrix Z is called lattice generator
matrix [7]. Geometrically, the point 2 belongs to a discrete
infinite set of points satisfying a group structure. When ) is
restricted to a finite QAM integer constellation, then 2 belongs
to a finite lattice constellation denoted by 	 . With the notations
of the previous section, the cardinality of 	 is �,� � D .

IV. ACCELERATED SPHERE DECODING ALGORITHM

A maximum likelihood lattice decoder applied to the re-
ceived point ( %32 - / determines the nearest lattice point to ( ,
i.e., it minimizes 
�
 ( � 2�
�
 . The main idea of the very efficient
sphere decoder algorithm [16][17][1] is to enumerate lattice
points inside a sphere centered on ( and reduce the radius of
the sphere each time a new point is found. This drastically
decreases the number of enumerated points but still ensures
the closest point criterion. If no point is found, the radius of
the search sphere should be enlarged.
The complexity of the sphere decoder depends on many
parameters, we cite the enumeration strategy inside the sphere,
the lattice structure and the specific lattice basis Z used in
the quadratic form 


 2�
�
 Q?%���� )�� % ),Z Z " ) " . Two non-trivial
lattice decoding strategies are known in the literature:� The Sphere Decoder based on Pohst strategy [13][8] was

applied by Viterbo, Biglieri and Boutros (VB) [16][17]
to digital communications. The key idea is to enumerate
lattice points inside an ellipsoid in the integer space that
corresponds to a spherical search region in the real space.
The search complexity is sensitive to the choice of the
initial radius.� The Sphere Decoder based on Schnorr-Euchner strategy
[14] was applied by Agrell, Eriksson, Vardy and Zeger
(AEVZ) in [1]. The key idea is to view the lattice as
laminated hyperplanes and then start the search for the
closest point in the nearest hyperplane. A search radius
can be specified in order to limit the search region to a
sphere. AEVZ decoding complexity is quasi-insensitive
to the choice of the initial radius.

Both sphere decoders (VB and AEVZ) may be accelerated, by
a factor up to 10, if Z is reduced via KZ or LLL algorithms.
These reduction algorithms have a main drawback if the
lattice constellation is finite. Indeed, LLL and KZ perform
a basis conversion and hence they convert the constellation
cube (QAM modulation assumed) into a parallelotope where
the boundaries are very difficult to determine. Furthermore,
in most practical situations, the complexity decrease obtained
by taking into account the finite structure of the constellation
is much more profitable than the application of LLL/KZ
algorithms. On multiple antenna channels, VB and AEVZ

complexities are similar at moderate and high signal-to-noise
ratios (SNR). At low SNR, AEVZ may show a speed gain
with respect to VB by a factor varying from 1 up to 4. Thus,
we propose below a modified version of the AEVZ sphere
decoder that takes into account the boundaries of the finite
QAM constellation, without including any lattice reduction.
This modified AEVZ sphere decoder may be viewed as the
extension of the depth-first branch-and-bound algorithm [12].

Accelerated Sphere Decoder: Applying Schnorr-
Euchner strategy + taking into account the boundaries
of the finite QAM constellation

Input. A received point � , the generator matrix ������� 
���� � of
the lattice, the radius ! of the sphere, and the bounds"$#&%(' and "$#�)+* of the constellation. You can set the
radius ! to ,.- . A slight gain in speed of at most 30%
can be obtained if ! is linked to the Gaussian noise
variance /10 or to the minimum distance 243 #&%(' ��56�

Output. The ML point "87:9 belonging to the constellation and
its squared Euclidean distance to �

Step 1. (Pre-processing) Compute the Gram matrix ;=<=�>�@?
and do a Cholesky decomposition ;=<=ABA ? , where A
is lower-triangular. Compute the inverse ADCE<=AGF�H

Step 2. (Initialization) Set IKJMLKNO2QPOLKN&RS!1T , UVRS� � , 2QPWL+NYX:RZ
, JMXVR[�\�]F�H , " X^R`_ J8X+X$a , " X^RcbVdfeg� " XQh "8#�%
' � ," X.RibVPj�k� " XQh "$#�) * � , compute l:<]�jJ8X+Xnm " X8�Yo4�pA CX+X � ,LKNqJsrtXuRvL+P�wf�k�xl\�

Step 3. Compute ��J yz2QPWLKN�R 2QPWL+N X ,{l\T . If ��J$yE2QPWLKN}|IKJ8L+NO2QPWL+N and U�~<�� then go to 4 else go to 5 endif
Step 4. Compute for P1<���h �����(h�U�m>��J8X FnHY� % R�J8X � % m�l\ADCX % ,

decrement U , set 2QPWLKNsXuR���J yz2QPWLKN , " XuR�_ J8X+X a , " XuRb�dfeg� " X h " #&%(' � , " X R�b�Pp�k� " X h " #�) * � , l�<��jJ X+X m" XM�Yo4�pA CX+X � , L+NqJYr�X�R�L P�wf�k�xl\� , go to 3
Step 5. If ��J yE2QPWL+N�|�IKJ8L+NO2QPWL+N then set " 7B9 R " , I+J8LKNq2QPWLKNkR��J yE2QPOLKN , else if U:<�� then return "M7B9 and terminate,

else increment U , endif. Compute " XuR " X&,�LKNYJYr�X , if" X�| " #&%(' or " X�� " #�) * then LKNYJYr�X�R�mzLKNqJsrtXDmL+P�wf�k�pLKNYJYr�X8� , " XuR " X�,�LKNqJsrtX endif. If " X1| "$#&%(' or" XG� "$#�) * then go to 5, endif. l�R��jJMX+X�m " XM�Yo�A1CX+X ,LKNqJsrtXuR�mzLKNYJYr�X6m�L+P�wf�k�pLKNYJYr�X8� , go to 3

Fig. 2 shows the bit error rate (BER) performance of the
accelerated sphere decoder with up to 16 antennas and an
uncoded 16-QAM constellation. In the case of �M� > �M� MIMO,
the lattice constellation 	 has �4�¡  points. Even though, the
accelerated sphere decoder quickly succeeded in finding the
ML point in the whole range ��¢�£k¤�¥�¥
¥��M¢�£n� of BER.

V. CONSTRUCTION OF A SHIFTED SPHERICAL LIST FOR

SOFT OUTPUT LATTICE DECODING

Let � ; denote the ¦ -th coded bit. The index ¦ satisfies��§=¦¨§ K ! " when considering a signal detection associated
to one symbol period. The iterative APP detector has two
inputs (see Fig. 4 below): The received vector ( and the a
priori probabilities on the coded bits ©�� � ;Q� . The detector de-
livers the a posteriori probabilities ªD«G«�� � ;�� and the extrinsic
probabilities ¬�� � ;�� .
A. Exhaustive APP detector

Consider the lattice constellation 	 defined in section III.
For a given � ; , we can write 	 %�	­� � ;?%]¢��4®G	­� � ;R%¯��� . The
sub-constellation 	­� � ;?%]¢�� (resp. 	­� � ; %°��� ) is defined by all
constellation points where the ¦ -th bit of the binary mapping is
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Fig. 2. Bit error rate of a 16-QAM on a flat Rayleigh MIMO channel.

equal to 0 (resp. 1). Then, the extrinsic information delivered
by the soft output detector is

¬�� � ; � %�� �������
	 ����
 ¤�� �f��� £�������� ��� ������ � �"! $$#
 ; ©�� � $M��%
� �&��� �f� � £�' ����� � ' ���� � �"! $$#
 ; ©�� � $ � % (4)

The above equation is well known in the turbo coding com-
munity, we do not give details about its proof due to the lack
of space. Equation (4) is the extrinsic probability for ��;�% � .
As an example, for ! " %3! $ %)( and a 16-QAM modulation,
(4) requires the computation of � ¤�� likelihoods for each binary
element! It is clear that exhaustive APP detection is practically
limited to the situations where K !#"�§+* , e.g., two antennas
and 16-QAM or four antennas and QPSK.

B. List APP detector

When the product K ! " is large, greater than 8 in practical
systems, point enumeration over the whole constellation 	 is
replaced by a point enumeration over a reduced size subset,.- 	 , also called list. The list size should be small with
respect to 
 	G
�%L� � ��D . We observe that soft outputs depend
both on the geometrical configuration when considering the
likelihoods, and on the a priori probability configuration fed
back from the decoder. In (4), some of the likelihoods are
negligible. In the absence of a priori information, let us
suppose that all the points with non-negligible likelihood
belong to the list

,
:/ )1032@ , \ / )4@ , \ � £ ������� �4� � ���� � 5 � £6' ����� � ' ���� � (5)

Thus,
,

contains lattice points inside a sphere of radius
�

centered on the received point ( . The choice of the sphere
radius determines the performance and the complexity of
the corresponding soft-in soft-out detector and is the main

difficulty encountered in classical list detectors. Also, when
,

is centered on ( , the radius
�

depends largely on the position
of ( in W � X , since

,
contains only lattice points belonging to

the intersection of the sphere and 	 (see Fig. 3).

C. Our shifted spherical list APP detector

Once the ML point 287:9V% );7<9�Z is found by an acceler-
ated sphere decoder, we choose to center the spherical list

,
on

2=7:9 instead of ( . Figure 3 clearly illustrates the advantages of
the ML center when compared with the received point center.
Indeed, when ( is outside the constellation 	 , which occurs at
a high probability when considering large number of dimen-
sions, the sphere centered on the received point enumerates
a large number of lattice points to find a small number of
constellation points. When the sphere is centered on 2 7:9 , the
number of enumerated points is dramatically reduced and the
high likelihood constellation points are taken into account. A
double Pohst recursion [13][8][6] is used to enumerate lattice
points inside the spherical list. The first classical recursion is
needed to check all lattice points at a squared distance less than� Q from 287:9 , i.e., solve ��� ) � )>7<9k� %¯
�
 2 � 2=7:9E
�
 Q�§ � Q .
The second parallel recursion easily evaluates the squared
Euclidean distances 
�
 ( � )[Z 
�
 Q between the enumerated points
2A% )[Z and the received point ( in order to compute the
channel likelihoods.

Shifted spherical list enumeration with a double Pohst
recursion

Input. A received point � , a constellation point e 7:9 , the
generator matrix �]��� � 
�� � � of the lattice, the radius !
of the sphere according to (10) below, and the bounds" #&%(' and " #�) * of the constellation

Output. A list ? of lattice points inside the sphere, a list of
squared Euclidean distances between � and each point
in the list

Step 1. (Pre-processing) Compute the Gram matrix ; <�@�A@ and do a Cholesky decomposition ;=<@ADAD? , A
is lower-triangular. Cholesky decomposition produces
an upper-triangular matrix B < _ C % D a , C %
% < A T%(% , andC % D <¯A D�% oMA %
% for P�< �k� �+�Y� � and E <}Pg,��k�+�+�q� � .
Compute the inverse � FnH , F�< " 7B9 <�e 7B9 � FnH andl¨< �\� F�H . Notice that "M7:9 can be directly offered
by the accelerated sphere decoder (section IV).

Step 2. (Initialization) Set 2\T.R�!.T , G ' X R !.T , GIH' X R !.T .
For EB<�������� ��� set J D R�F D , J HD Ril D , PgRi���

Step 3. Compute K % R bVPj�ML8N�O G % o&C %
% ,PJ %�Q h "$#�) *SR and"$% R bVdfe<L=TYmUO G % oVC %
% ,"J %4W h "$#&%('�R m��
Step 4. Increment " % . If " %YX K % if P�� � compute Z % RF % m "$% and Z H% R`l % m "$% , compute G % FnH R[G % mC %
% �\J % m " % � T and G H% FnH R]G H% m�C %(% �\J H% m " % � T , computeJ % FnH R^F % FnH ,A_ ' XDa`�% C % FnHY� D Z D and J H% F�H Rcl % FnH ,_ ' XDa`�% C % FnHY� D Z HD , decrement P and go to 3, else computeb2 T R�! T mcG H% ,PC HYH �\J HH m " H � T , store " and

b2 in ? ,
go to 4, endif, else if P <@� � terminate else incrementP and go to 4, endif, endif

D. Choice of the shifted list radius
�

In this section, some properties of the lattice
�

and the
constellation 	 are exploited to determine a sphere radius
that guaranties a high stability for the number of points
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Fig. 3. Comparison between a spherical list centered on the ML point and
a spherical list centered on the received point � (low SNR situation).

required in the list. Let us assume that our initial objective
is to find H�� points to create a list centered on 2 7:9 . We
can make the approximation that the volume of a sphere
containing H � points is equal to the volume of H � fundamental
parallelotopes. Hence, the radius

�
is well approximated by

��� � H � >���� 	 � � �
 � X �
�� X

(6)

where ��� 	 � � �O%�
 
 ��� � Z°�8
 and

 � X is the volume of a unit

radius sphere in the real space W � X ,

 � X %[© � D 2U!M"�� . This

method of choosing the radius is quite stable in a lattice
when H�� is relatively large. The effective number H�� of
points in

,
is very close to the number H�� , or equivalently

H��V2 H�� � � . Now, when considering a finite constellation 	 -�
, the intersection between the sphere and the constellation

significantly diminishes H � , depending on the position of the
ML point in the constellation 	 and the shape of 	 . Thus, the
fraction H � 2 H � should be controlled by taking into account
the influence of these two parameters. As an example, consider
a cubic integer constellation 	 in W � X . We can evaluate the
average number of points in the list by the simple hypothesis
that it is divided by � for each dimension where the ML
point is on the edge of the constellation. For a 16-QAM with
!M" %3!#SV2�� transmit antennas, we have � :� X > � �YX points with�

components on the edge of the constellation. This leads to
an average number of points for 16-QAM equal to

� 7 H�� = %
� X�
: 
 I � :� X ¥ � � X( �YX ¥ � : H�� % ���( � � X

H�� (7)

When ! " % ( , the average reduction factor is about �$2 ��¢ .
Hence, in the general case of a random (non-cubic) constella-
tion 	 given by the MIMO channel, we can adjust the sphere
radius by taking into account the number of hyperplanes !���� �
at the constellation boundaries passing through the ML point.
The number of expected points H � is multiplied by � 7 ! �!� � = ,
an expansion factor of the list size which depends on !"��� � .
Indeed, the more the number of hyperplanes the ML point
belongs to, the less the points in the list. For the special case of
MIMO channels family, the empirical choice � 7 � =�%$# � 2 �&%�-��
yields good results.
The number H'� is also influenced by the shape of 	 . A
non-cubic shape with an acute corner attenuates the fraction
H � 2 H � . We selected the normalized distance (&�*)�� as a figure
of merit for the shape of 	 :

(6�+)�� % 
,Q, � : � �+)��
��� 	 � � � Q�- � X (8)
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where 
 Q, � : � �+)�� is the minimum diagonal element of the
Gram matrix ) . Then, we introduce an additional expansion
factor <7=?>}� and apply the simple rule:

(6�+)��@>A( :CB <7=4%D< : (9)

In the 8-dimensional real space, one may take ( ¤ % � 
FE \G( Q %�H
FE \I< ¤ %)( , and < Q % ��� . Finally, the radius
�

of the shifted
spherical list

,
should be computed according to

� %
� � 7 ! ��� �U= > <7= > H�� >J�F� 	 � � �
 �YX �

�� X
(10)

E. Complexity reduction for block fading channels

In the case of block fading channels, the channel remains
unchanged during the block period. Thanks to the lattice group
structure, we can find the points in the sphere centered on the
origin ¢ and then translate them to find the points in the sphere
centered on 2 7:9 . In the list, we store H'K points belonging to
the constellation with their integer labeling. For each channel
use, the additive Gaussian noise moves ( , so the distances
�
 ( � ),Z 
�
 have to be reprocessed. We can also enumerate a
larger list and sort it by increasing distance to the origin. This
can be seen as a list of concentric spheres. If the first sphere
leads to a list which is too small, then we consider the second
sphere and so on.

F. Applications to iterative detection and decoding of BICM

An iterative joint APP detection and decoding receiver is
based on the exchange of soft values between the SISO QAM-
detector and the SISO channel code decoder. The information
exchange between inputs and outputs of the two blocks is
shown on Fig. 4. We assume that the reader is familiar with
turbo detection and decoding techniques. Figure 5 gives the
detailed block diagram of the soft output detector. The reader
should notice that the sphere decoder (including the search
of 2=7:9 and the construction of

,
) is outside the iterative

detection and decoding loop.

VI. COMPUTER SIMULATIONS AND NUMERICAL RESULTS

Let us consider a rate �$2 � parallel turbo code [2] whose
constituent codes are two �s� \�L�2NMf� recursive systematic con-
volutional codes. The rate 1/2 constituents are punctured in
order to increase the concatenation rate from 1/3 to 1/2. Figure
6 shows the achievable information rate for ( > ( multiple
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antenna channel with 16-QAM input alphabet. The mutual
information value of 8.0 bits per channel use yields a minimum
achievable signal-to-noise ratio equal to 4.0dB. The capacity
limit with a Gaussian input at 8.0 bits per channel use is 3.7
dB. Figure 6 illustrates an application of the soft output sphere
decoder to the evaluation of MIMO channel information rate
under the constraint of a finite QAM constellation input. Two
scenarios are presented: 1- A target list size H � % �M¢\¢4¢ . The
effective list size was distributed between H � � K � ! � %A�HL4� and
H � � K�! 2n� %A� � ¢4¢ with an average equal to 1000. 2- A target
list size H � %°�4¢4¢\¢4¢ ! The effective list size was distributed
between H � � K � ! �4%.(\¢4¢\¢ and H � � K"! 2g�4% �4�4¢4¢\¢ with an
average equal to 10000. It is clear that mutual information
evaluation is useful at high coding rates (

�&�$# �$2 � ) where
its value diverges from the gaussian input capacity. A reduced
size list is sufficient in this region. Figure 7 illustrates the
performance of the 4-state parallel turbo code described above.
The BICM interleaver size is 20000 and 100000 coded bits re-
spectively. The total number of performed detection/decoding
iterations in the BICM receiver is 25. The two different list
constructions are also presented, the list centered on ( and the
list centered on 287:9 . The performance curve to the most left
shows a BER of ��¢ £ 2 at 1.25dB from capacity limit under the
constraint of a 16-QAM channel input.
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