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Résumé — Nous proposons un détecteur APP de faible complexité capable de démoduler les constellations MAQ émises sur
un canal & antennes multiples (jusqu’a 16 antennes). Le détecteur APP recherche le point de vraisemblance maximale (VM) en
appliquant un décodage par spheres accéléré. A laide d’une énumération de Pohst & double récursion, il construit ensuite une
liste centrée sur le point VM afin d’évaluer les probabilités a posteriori. Le rayon de la liste est choisi de fagon a stabiliser la taille
de la liste et tenir compte des frontiéres de la constellation finie. En utilisant une modulation MAQ-16 sur un canal symétrique
a 4 antennes, un turbo code de rendement 1/2 et des blocs de longueur 20000 bits, nous observons une différence de 1,56 dB
seulement entre les performances simulées et la capacité du canal au sens de Shannon.

Abstract — We propose a low complexity APP detector for demodulating QAM constellations transmitted on a MIMO channel
(up to 16 antennas). The APP detector starts by applying an accelerated sphere decoder to find the maximum likelihood (ML)
point. Then, using a double recursion Pohst enumerator, a shifted list is built around the ML point to evaluate the output
APP. The list radius is selected in order to control the list size and to cope with the boundaries of the finite multiple antenna
constellation. With a rate 1/2 turbo code and a blocklength equal to 20000 bits, we achieved a bit error rate at 1.56 dB from
Shannon capacity limit while transmitting a 16-QAM on a 4x4 multiple antenna channel.

1 Introduction and system model where H = [h;;] is an ny X n, complex matrix. The entries
h;j of the channel matrix are complex random variables
with a Gaussian probability distribution of zero mean and

The growing importance of iterative processing in com- ’ ” ' ’
unity variance. This complex system can easily be con-

munication systems [2] during the last decade has permit- 4 ) " ’
ted to attain exceptional performance on different kind ~ verted into a real system and viewed as a lattice A mn ]Rn
of data transmission channels, e.g., bit-interleaved coded [5] perturbed by addltlYe ROISE. Tbe real space dimension
modulations (BICM) [12][4] on multiple antenna (MIMO) 18 s = 2n¢. The equality z = zH is now extended to the
channel combined with joint detection and decoding at the ~ real space R™ to get

receiver side [3][7]. When the channel number of dimen- z=zM, z€R™, »¢cZn (2)
sions and the number of points per dimension increase, the

classical exhaustive soft output channel detector becomes A lattice A is a discrete subgroup of R [5], i.e., it is a
intractable. We present a new non exhaustive spherical ~ Z-module of rank n,. In (2), the lattice A is generated by
list centered on the maximum likelihood (ML) point to  the ns x ns real matrix M = [M;;] which is derived from
compute weighted channel likelihoods. For example, our the channel matrix H by the following simple relation
APP detector achieves a bit error rate at 1.56 dB from Rhij  Shij

Shannon capacity limit while transmitting a 16-QAM on Mij = ( —Shy; Rhy ) (3)
a 4x4 multiple antenna channel.

Information bits are protected by an error-correcting code where Rh;; and Shy; denote the real and imaginary part
and interleaved by a pseudo-random permutation. The of hij, respectively. The matrix M is called lattice gen-
coded bits are then mapped into points of a 16-QAM con- erator matriz. Geometrically, the point z belongs to a
stellation. Symbols are conveyed on a multiple antenna or discrete infinite set of points satisfying a group structure.
multiple input multiple output (MIMO) channel with ny When z is restricted to a finite QAM integer constellation,
transmit antennas and n, receive antennas. Let z € C™t then x belongs to a finite lattice constellation denoted by

denote the MIMO channel input and y € C* the MIMO 2. With the above notations and a 2'-QAM modulation,
channel output. Channel input and output are linked via  the cardinality of {2 is 2",

the non-selective Rayleigh fading model:
Some evident capacity optimization arguments led us to

choose n; = n,. The lattice representation of the MIMO
y=zH+v=x+v (1)  channel allows us to use related theory and decoding al-



gorithms adapted to digital communications and particu-
larly to finite constellations problems.

2 Owur APP detector for multiple
antennas

The direct method for establishing a non exhaustive APP
detector is to build a spherical list of lattice points around
y. Such lattice point enumeration is achieved in polyno-
mial time via Pohst enumeration [8][6] inside a sphere of
squared radius R?. The number N, of lattice points inside
the sphere can be well approximated by
ng
N, =~ M (4)
vol(A)

where V,,, is the volume of a unit radius sphere in IR"*
and vol(A) = |det(M)] is the lattice fundamental volume.
Such a method applied in [7] is still too complex: the
lattice constellation €2 to be decoded is finite. Center-
ing the list around y makes N, completely unstable. The
instability is due to the additive noise and to the exact
position of the transmitted point within Q. Thus, there is
no evident relation similar to (4) between R? and N,, the
effective number of constellation points inside the spheri-
cal boundaries.

We propose a spherical list centered around the ML point
zpr. Since zprr belongs to Q C A, the fraction N./N,
can be well selected depending on the position of zas7, and
the shape of Q. The fraction N./N,, should be controlled
by taking into account the influence of these two parame-
ters. As an example, consider a cubic integer constellation
2 in R™. We can evaluate the average number of points
in the list by the simple hypothesis that it is divided by 2
for each dimension where the ML point is on the edge of
the constellation. For a 16-QAM with n; = n,/2 transmit
antennas, we have Cﬁls X 2" points with ¢ components
on the edge of the constellation. This leads to an average
number of points for 16-QAM equal to

ns . ons 3 s
E[N,] = Z cns.—4ns 5i Vo = (Z) N, (5)
i=0 :

When n; = 4, the average reduction factor is about 1/10.
Hence, in the general case of a random (non-cubic) con-
stellation Q given by the MIMO channel, we can adjust
the sphere radius by taking into account the number of
hyperplanes np,y, at the constellation boundaries passing
through the ML point. The number of expected points NNV,
is multiplied by a[ns,,], an expansion factor of the list size
which depends on nj,y;. Indeed, the higher the number of
hyperplanes the ML point belongs to, the less the points
in the list. For the special case of MIMO channels family,
the empirical choice afi] = [i/2] + 1 yields good results.

The number N, is also influenced by the shape of Q2. A
non-cubic shape with an acute corner attenuates the frac-
tion N./N,. We selected the normalized distance v(G) as
a figure of merit for the shape of Q:

_ min(G)

Emin

( )_W (6)

where d%,... (@) is the minimum diagonal element of the
Gram matrix G = M M. Then, we introduce an addi-

tional expansion factor y, > 1 and apply the simple rule:

YG) > vi = py = i (7)

In the 8-dimensional real space, one may take v, = 3dB,
v2 = 6dB, u; = 4, and uy = 16. Finally, the radius R of
the shifted spherical list £ should be computed according

to .
<a[nhyp] X fhy X Np X vol(A)> ns
R = v

(8)

s

Our APP detector starts by applying an accelerated sphere
decoder to find zpsr and then it builds the list using a
double Pohst recursion for channel likelihoods evaluation.
The final APP is determined by mixing the likelihoods
and the a priori information via a sum-product formula.
It is worth to note that, except for the final sum-product
formula, the main processing done by our APP detector
(accelerated sphere decoder+shifted spherical list) is out-
side the iterative detection/decoding loop.

2.1 Accelerated sphere decoding algorithm

A very efficient algorithm to find the closest point in a
lattice when observing any point in the real space is the
sphere decoder [10][11]. The main idea of this algorithm
is to enumerate the lattice points that belong to a sphere
centered on y and to calculate the corresponding Euclidean
distances. The point that minimizes the distance is called
the closest point (zp1). If no point is found, the radius
of the sphere should be enlarged. Each time a point is
found, the radius of the sphere can be reduced to the dis-
tance of this new point, which limits the number of points
enumerated but still ensures the closest point criterion.

There are two main strategies for point enumeration. The
first was proposed by Pohst [8][6] and applied by Viterbo
et al (VB) [10][11] to digital communications. The second
was proposed by Schnorr and Euchner [9] and applied by
Agrell et al (AEVZ) in [1]. On multiple antenna channels,
VB and AEVZ complexities are similar at moderate and
high signal-to-noise ratios. At low signal-to-noise ratios,
AEVZ may show a speed improvement with respect to VB
by a factor varying from 1 up to 4. We modified AEVZ
sphere decoder in order to take into account the QAM
constellation boundaries. We did not apply basis reduc-
tion (LLL or KZ) to the accelerated sphere decoder be-
cause basis reduction is incompatible with a fast checking
of the QAM constellation boundaries. The finite constel-
lation nature of the system allows to significantly reduce
the complexity of the sphere decoder by dynamically mod-
ifying the bounds of research depending on those of the
constellation. The accelerated sphere decoder is capable
of ML performance on MIMO channels (up to 16 anten-
nas) with a reasonable complexity (see Figure 1).

We give below the complete steps of the modified AEVZ
sphere decoder.



Accelerated Sphere Decoder: applying Schnorr-Euchner
strategy, and taking into account the boundaries of the
finite QAM constellation

Input.

Output.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

A received point y, the generator matrix M (ns X
ns) of the lattice, the radius R of the sphere, and
the bounds zmin and zmer of the constellation.
You can set the radius R to +o0o0. A slight gain
in speed of at most 30% can be obtained if R is
linked to the Gaussian noise variance o> = Np or
to the minimum distance dgmin (A)

The ML point zar belonging to the constellation
and its squared Euclidean distance to y
(Pre-processing) Compute the Gram matrix G =
M M?" and do a Cholesky decomposition G = VV?,
where V is lower-triangular. Compute the inverse
vI—y-!

(Initialization) Set bestdist < RZ, k < mns,
dist, + 0, er — yVI, zx <« lew], 2z «
maz (2, Zmin ), 2k  MIN(Zk, Zmaz), compute p =
(exr — z)/ (Vilk), step < sign(p)

Compute newdist < disty + p2. If newdist <
bestdist and k # 1 then go to 4 else go to 5 endif
Compute for s = 1,....,k — 1 ep_1.;  er: — pVi;,
decrement k, set disty < newdist, zr + [exk],
2k Maz(Zk, Zmin), 2k — MIN(2k, Zmaz), P =
(exr — zk)/(Vilk), stepr < sign(p), go to 3

If newdist < bestdist then set Z < z, bestdist
newdist, else if k = n then return 2 and terminate,
else increment k, endif. Compute zy < zi + stepg,
if 2z < Zmin O Zk > Zmaz then stepy < —stepr —
sign(stepy), zr < zr + stepy endif. If 2, < Zmin or
2k > Zmae then go to 5, endif. p < (err — 21)/ Vi,
stepy, < —stepr — sign(stepr), go to 3

2.2 APP evaluation based on a shifted
spherical list

Given a list £ of constellation points in IR™, the approxi-
mated extrinsic probability £(c;) of a coded bit ¢; is given
by the following normalized marginalization:

€(cj) =

Zz'ea(cj:mm: [(e 2”2> I1,z; ”(Cr)]

== 2a)?

(9)

2 zcone {(e 27
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The evaluation of the Euclidean distances between y and
the points in £ has been optimized by applying a double
Pohst recursion while enumerating the lattice points. In-
deed, the first classical recursion is needed to check all con-
stellation points at a squared distance less than R? from
the center zpr,. We added a parallel second recursion
centered on y to reduce the number of mathematical op-
erations that compute the Euclidean distances ||y — zM||
required in the extrinsic probability formula.

We give below the complete steps of the double recursion
point enumeration inside £.

Soft Output Sphere Decoder: shifted spherical list enu-

meration with a double Pohst recursion

Input.

Output.

Step 1.

Step 2.

Step 3.

Step 4.

A received point y, a constellation point z 1, the
generator matrix M (ns X ns) of the lattice, the
radius R of the sphere according to (8) below, and
the bounds zmin and zmaes of the constellation

A list £ of constellation points inside the sphere, a
list of squared Euclidean distances between y and
each point in the list

(Pre-processing) Compute the Gram matrix G =
MMT? and do a Cholesky decomposition G =
VVt, V is lower-triangular. Cholesky decompo-
sition produces an upper-triangular matrix @ =
[(Iij], qii = Vﬁ, and g;; = VJZ/VH fori =1...n,
and j =i+ 1...n,. Compute the inverse M !,
w = zyur = M~ and p = yM~'. Notice
that zarr can be directly offered by the acceler-
ated sphere decoder (section 2.1)

(Initialization) Set d? < R?, T,, + R* T¢ +«
R®. For j = 1..ms set S; < uj, S§ < pj, i + ns

Compute L; < min ([\/m—f- SiJ ,zmm) and
zi & max ([—\/Ti/qu‘ + Si-l ,zmm) -1

Increment z;. If z; > L; if ¢ > 1 compute
& — u; — 2z and €% < p; — z;, compute Tj_;
T, — q“(SZ — Zi)z and Tid,l — Tid — q”(S;i — Zi)z,
compute Si—1 < ui—1+ 7%, gi-1,;€; and SE
pi—1+ Z;L;l qz;l,jﬁf, decrement ¢ and go to 3, else
compute d? < R>—T%+q11(S{ —z1)?, store z and
d in £, go to 4, endif, else if i = n, terminate else
increment i and go to 4, endif, endif

The subset Q(c; = 1) represents the set of points belong-
ing to Q with j-th bit equal to 1. The a priori probabili-
ties m(c;) of the coded bits are fed back from a soft-input
soft-output (SISO) decoder of the error-correcting code
included in the BICM. Our spherical list £ is centered
around the closest point z,;;, found by the accelerated
sphere decoder. The squared radius R? has been deter-
mined in a way to guarantee a moderate value for N, = |£|
(e.g., 1000 points). The list size should not be too small
(e.g., 10 points!), in order to guarantee an APP quality
as if £ = Q. On the contrary, the list size should not be
too large (e.g., close to |2 = M™) in order to limit the
detector complexity. The ML point and its neighbors in 2
yield the dominant likelihoods in the extrinsic probability
generated by the APP detector.

3 Computer simulations and
numerical results

The new soft output sphere decoder is applied to detect a
16-QAM modulation transmitted on a 4 x4 ergodic MIMO
channel. The error-correcting code is a rate 1/2 parallel
Turbo code. The RSC constituent is the classical 4-state
(1,5/7) code. The BICM interleaver size is 20000 bits. On
Fig. 2, we can see that the above coded system achieves a
distance 1.56 dB from Shannon capacity limit, under the
constraint of a finite input 16-QAM alphabet. A supple-
mentary signal-to-noise ratio gain of 0.30dB can be ob-
tained with a large BICM interleaver of size 100000 at the
expense of a greater latency.
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FiG. 1: Performance of the accelerated sphere decoder
(ML), uncoded 16-QAM, ergodic Rayleigh MIMO chan-
nel, ny = n, =1, 2,4, 8 and 16 antennas.
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