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Abstract— In this paper, we design bit-interleaved coded mod-
ulations for multiple antenna channels under iterative detection
and decoding. Binary QAM mappings and linear space-time
precoders are fine tuned by the mean of a genie method that
assumes perfect a priori information. We also describe the
construction of an interleaver that optimizes the total space-
time diversity order for a given error-correcting code. Computer
simulations illustrate the universality of bit-interleaved coded
modulations with different channel conditions.
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I. INTRODUCTION

We study bit-interleaved coded modulations (BICM) for
digital transmission over multiple-input multiple-output
(MIMO) channels. Channel coding techniques for MIMO
channels, commonly known as space-time coding, can be
classified into four major categories:
• Multi-dimensional trellis coded modulations (TCM) [2][6].
This category includes Ungerboeck-like coded modulations
and the simple case of a classical convolutional code where
each trellis transition is associated to one channel use.
• Space-time block coding (STBC). The latency of STBC is
minimal compared to other techniques. This category includes
orthogonal and quasi-orthogonal designs (OD and QOD)
[11][14] and the simple technique proposed by Alamouti [9].
• Multilevel coding (MLC) for multiple antennas. Since
the original work by Imai and Hirakawa [1][10], it has
been demonstrated that MLC can be applied to any type of
channels, i.e., scalar and vector channels. In MIMO channels,
different levels for coding are defined on QAM symbols fed
at the channel input or directly on the binary labels of those
symbols.
• Bit-interleaved coded modulations. Combining the original
ideas by Zehavi [3][7], Berrou & Glavieux [4], a coded
modulation is built by cascading a convolutional code, a
pseudo-random interleaver, a QAM symbol mapper and a
MIMO channel. The receiver starts by an APP detection of
the multiple antenna channel followed by a SISO decoding of
the convolutional code. The latter procedure is iterated a finite
number of times, where the convolutional code extrinsics are
fed back as a priori information to the APP detector [12][16].

The paper is organized as follows: Terminology and system
model are presented in the next section, this includes the

detector structure. Section III describes the genie method and
its application to design mappings and space-time precoders.
The construction of a new interleaver for universal BICM is
given in section IV. Finally, Monte Carlo simulations are found
in section V.

II. SYSTEM MODEL AND NOTATIONS

We consider a MIMO channel with nt transmit antennas
and nr receive antennas. We limit our study to the case
of frequency non-selective channels and coherent detection
at the receiver side. The channel is completely defined by
its nt × nr complex matrix H . The channel matrix H is
assumed to be known to the receiver and unknown to the
transmitter. This simple matrix model for a MIMO channel
is also valid in the frequency selective case where a multi-
carrier modulator (Orthogonal Frequency Division Multiplex-
ing) can remove selectivity. Generally, we distinguish three
types of non-selective MIMO channels: 1- Ergodic channel:
The random variable H changes at each channel use. 2-
Quasi-static channel: The random variable H is constant all
along a transmitted codeword. It changes from one codeword
to another. 3- Block-fading channel: A channel codeword
observes nc distinct channel states. This case reduces to the
first model if nc is equal to the codeword time length, and to
the second model if nc = 1.
A universal space-time code, as recently defined by El Gamal,
Hammons, Damen [17][19] and other authors, is a space-time
code capable of achieving the best diversity order for any value
of nc. We show that a well-designed BICM is a universal
space-time code.

A. Structure of the bit-interleaved coded transmitter

Our system model is the following: A binary error-
correcting code C (e.g., a convolutional code), followed by a
deterministic interleaver Π, a M -QAM symbol mapper, a rate-
1 space-time spreader S (i.e., a linear precoder) and a serial-
to-parallel converter. Fig. 1 illustrates the BICM transmitter
structure.

Let Rc denote the coding rate of C and b the information
word at the encoder input. The interleaver Π is selected
pseudo-randomly with some deterministic constraints as
explained in Section IV. The interleaved codeword fed to
the QAM mapper is denoted by c. The complex QAM
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Fig. 1. Bit-interleaver coded mutliple antenna transmitter.

constellation has M = 2m symbols. At each channel use,
the mapper reads m × nt coded bits and generates nt QAM
symbols. The linear precoder S spreads the QAM symbols
over s time periods. It converts the nt → nr vector channel
into a Nt → Nr vector channel, where Nt = nt × s and
Nr = nr × s. The Nt ×Nt matrix S reads Nt QAM symbols
z = (z0, z1, . . . , zNt−1) at the mapper output and generates
Nt symbols transmitted during s time periods.
Without space-time spreading (s = 1 and S is the identity
matrix), the channel path connecting antenna i to antenna
j has a complex Gaussian distributed gain hij , where
H = [hij ], E[hij ] = 0, E[|hij |2] = 1, i = 0 . . . nt − 1 and
j = 0 . . . nr − 1. Here, the symbol E[.] denotes mathematical
expectation. The MIMO channel coefficients hij are supposed
to be statistically independent.

When space-time spreading is applied (s > 1), we use the
same notation for the extended Nt × Nr channel matrix

H = diag{ H1, . . . , H1
︸ ︷︷ ︸

, H2, . . . , H2
︸ ︷︷ ︸

, . . . , Hnc
, . . . , Hnc

︸ ︷︷ ︸
}

s/nc

(1)
In the above extended block diagonal matrix H , Ht is a nt×nr

MIMO matrix corresponding to one channel use at the time
period indexed by t. Now, we can write the channel input-
output relation:

y = x + η = zSH + η (2)

where y ∈ CNr and each receive antenna is perturbed by an
additive white complex Gaussian noise ηj , j = 0 . . .Nr − 1,
with zero mean and variance 2N0.

B. Structure of the iterative detector

The spectral efficiency of the transmission system described
in the previous sub-section is Rc × m × nt bits per channel
use. Let us describe the structure of an iterative a posteriori
probability (APP) detector that makes both signal detection
and error correction.

The receiver has two main elements as described in Fig. 2:
An APP QAM-detector that acts as a soft output equalizer for
both the space-time spreader and the MIMO channel, and a
SISO decoder for C. An iterative joint detection and decoding
process is based on the exchange of soft values between the
SISO QAM-detector and the SISO convolutional decoder. The
SISO detector computes the extrinsic probabilities ξ(c`) via
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Fig. 2. Iterative APP detection and decoding receiver.

a classical sum product expression including the conditional
likelihoods p(y/z) and the a priori probabilities π(c`) fed
back from the SISO decoder. The SISO detector computes
the extrinsic information, which corresponds to the extrinsic
probability that the j th coded bit equals 1, as given in the
following normalized marginalization:

ξ(c`) =

∑

z′∈Ω(c`=1)

[(

e−
‖y−z′SH‖2

2σ2

)
∏

r 6=` π(cr)

]

∑

z∈Ω

[(

e−
‖y−zSH‖2

2σ2

)
∏

r 6=` π(cr)

] (3)

where Ω is the Cartesian product (M -QAM)Nt , i.e., the set of
all vectors z generated by the QAM mapper, |Ω| = 2mNt . The
subset Ω(c` = 1) is restricted to the vectors z where the lth bit
is equal to 1. By exploiting the trellis structure of the code,
the SISO decoder computes the soft values (a posteriori and
extrinsic probabilities) for the coded bits using the Forward-
Backward algorithm.

C. Recalling some simple facts in space-time coding

On a general block-fading channel, the performance at the
decoder output is function of the so called diversity order and
coding gain [6][17]. Maximizing these two quantities leads to
the best space-time code. This is our objective in designing
a universal space-time BICM. The coding gain is controlled
by the choice of the error-correcting code C and the binary
labeling used in the M -QAM symbol mapper. On the other
hand, for a given code C, the diversity order is controlled by
the interleaver instance Π and the linear precoder S.
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In the literature, authors working on space-time coding
studied the design criteria via the pairwise error probability
between two transmitted sequences. Mainly, two criteria have
been established and are widely used in the space-time coding
community:

• The Hamming distance criterion: On an ergodic mul-
tiple antenna channel, the time diversity order is equal
to the minimum columnwise Hamming distance between
two distinct codewords. The codewords are viewed as
complex matrices with nt rows.

• The rank criterion: On a quasi-static multiple antenna
channel, the spatial diversity order is equal to the mim-
imum rank of the difference matrix between all pairs of
distinct codewords.

The pairwise error probability analysis also gives us the
expression of the so-called coding gain on a MIMO channel.
Except for multi-dimensional rotations on a single antenna
Rayleigh fading channel that maximize the product distance
[8][18], the coding gain seems to be an uncontrolable parame-
ter in most space-time coding techniques. Fortunately, a BICM
will offer us two means for tuning the coding gain: The choice
of C and the mapping design via the genie method as shown
in the sequel.

III. THE GENIE METHOD AND ITS APPLICATIONS

We determine below a closed-form expression for the error-
rate performance at the detector output in presence of a genie
delivering perfect a priori information. This expression and
the associated figure of merits are called the genie method.
The genie method enables us to achieve two objectives:
1- Optimize the binary mapping of the QAM constellation, in
order to improve the coding gain. The genie method is a very
simple tool to compare classical mappings, such as Gray or
Ungerboeck mappings, to other optimized mappings.
2- Design a space-time linear precoder that guarantees a
maximal diversity order. The linear precoding is made by a
modified cyclotomic rotation [8]. The genie method establishes
the constraints that must be satisfied by the space-time pre-
coder in order to maximize the transmit diversity measured at
the detector output. For simplicity reasons and without loss of
generality, it is assumed that s = 1 and S = I (identity) in
subsections III-A and III-B below.

A. Error performance at the MIMO detector output

Consider the iterative detection and decoding process of
the BICM transmitted on the multiple antenna channel as
illustrated in Fig. 1 and 2. Assume that extrinsic information
associated to such a process is converging towards a limit. The
best limit corresponds to the ideal situation where the extrinsic
information is perfectly reliable, i.e, π(c`) = c` ∈ {0, 1}. This
is called the genie situation. The expression of the detector
soft value, when the a priori is fed back by a genie, is easily
obtained from (3):

ξ(c`) =
e−‖y−zH‖2/2N0

e−‖y−zH‖2/2N0 + e−‖y−z̄`H‖2/2N0

(4)

where z̄` is produced by complementing the `th bit in the
binary labeling of z. Obviously, from the definition of ξ(c`)
in (3), the binary element in the `th position is equal to 1
(respectively 0) in z (respectively z̄` ). In this case, the system
is equivalent to a multidimensional binary modulation BSK
with signaling alphabet

{
z, z̄`

}
transmitted on a 1×nr single

input, multiple output (SIMO) channel. We are interested in
evaluating the error probability Pe at the detector output when
the genie is active. This error probability is directly related to
the decision making on ξ(c`). By conditioning on the channel
state H and the transmitted QAM vector z, we can write

Pe|H,z = E` [P (|ξ(c`) − c`| ≥ 0.5)] (5)

The symbol E`[.] denotes mathematical expectation over the
position ` of the coded bit. Then, using (4) and (5), we can
express Pe with a classical inequality including H , z and η:

Pe = EH,z,`

[
P
(∥
∥(z − z̄`)H + η

∥
∥ ≤ ‖η‖

)]
(6)

which is equal to

Pe = EH,z,`



Q





√

‖(z − z̄`)H‖2

4N0







 (7)

The norm
∥
∥(z − z̄`)H

∥
∥

2
is calculated from

∥
∥(z − z̄`)H

∥
∥

2
=

nr−1∑

u=0

∣
∣
∣
∣
∣

nt−1∑

v=0

(zv − z̄v
`)hvu

∣
∣
∣
∣
∣

2

(8)

We can remark that the performance of the system at
the input of the decoder, when the a priori feedback at the
input of the detector is perfect, is the average probability of
the |Ω| × m × nt equivalent BSKs with distance d(z, z̄`)
on a nt × nr MIMO channel. If z and z̄` belong to the
same antenna, which is generally the case, this leads to the
performance evaluation of a BSK modulation on a 1 × nr

SIMO channel.

The BSK is defined by two equiprobable symbols z and z̄,
their Euclidean distance is defined by d(z, z̄). The received
symbol y conditioned on the transmission of z is given by
y = zh + η, where h is a column vector defining the
1×nr SIMO channel. The quadratic distance between the two
symbols filtered by the channel is d(z, z̄)2‖h‖2. The squared
Euclidean norm ‖h‖2 has a central χ2 distribution with degree
2nr, the real gaussian random variables have zero mean and
variance 1/2. The noise is white gaussian distributed, the
symbols are equiprobable, so we can deduce :

Pe = Φ
(
d(z, z̄)2

)
(9)

The function Φ(.) is defined as:

Φ
(
d(z, z̄)2

)
= Eh



Q





√

d(z, z̄)2 ‖h‖2

4N0







 (10)

Similar to a 2nr-diversity Rayleigh fading channel (see
chap.14 in [13]), the error probability Pe can be calculated
in a closed-form expression given in (11).
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Pe = Φ
(
d(z, z̄)2

)
=





1 − 1√
1+8N0/d(z,z̄)2

2





nr
nr−1∑

k=0

(
nr − 1 + k

k

)




1 + 1√
1+8N0/d(z,z̄)2

2





k

(11)

B. Binary mapping design via the genie method

We consider here the classical situation when a 2-
dimensional (complex) labeling is applied on each antenna
independently. Let us assume that the coded bit c` is transmit-
ted on the i-th antenna. Then, (z − z̄`) has only one non-null
component in the ith position.
Thanks to (8), we have

∥
∥(z − z̄`)H

∥
∥ = d(z, z̄`). ‖hi‖ where

hi is the i-th row of H . In the sequel, the integer i should be
considered as a function of the integer `, it can be calculated
by i =

⌈
`
m

⌉
. Hence, (11) leads to

Pe =
1

m.nt.|Ω|
∑

z∈Ω

m.nt∑

`=1

Φ
(
d(z, z̄`)

)
(12)

The asymptotic expression of Pe when N0 → 0 is:

Pe ∼

(
2nr − 1

nr

)(
2N0

αΩ

)nr

(13)

where αΩ is defined by a harmonic mean:

1

αnr

Ω

=
1

m.nt.|Ω|
∑

z∈Ω

m.nt∑

`=1

1

d(z, z̄`)2nr
(14)

We can calculate the asymptotic gain of labeling Ω2 with
respect to labeling Ω1 as follows:

GaindB ∼ 10 log10

(
αΩ2

αΩ1

)

(15)

Here, the asymptotic gain only depends on the distance distri-
bution of the equivalent BSKs. We can compare two M-QAM
mappings together or a M -QAM mapping with a M -PSK
mapping. For example, we found many 16-QAM mappings
(selected at random) that exhibit 7dB gain with respect to
Gray mapping on a MIMO channel for nt = nr = 1 . . . 8.
One of these binary mappings is shown on Fig. 3.

C. Space-time linear precoding design via the genie method

In the sequel, the Nt × Nt complex linear spreader S
is limited to the case of unitary orthogonal transformations,
where SSh = ShS = I .

1) Space-time codes for the ergodic MIMO channel:
The channel changes at each use, i.e., s = nc. The
extended channel matrix is Nt × Nt block diagonal
H = diag {H1, . . . , Hs}. If s = 1 and S 6= I , then H ′ = SH
is a different channel instance. Thus, it is trivial to conclude
that only the case s ≥ 2 should be studied.

Let us consider the `-th coded bit c` of the transmitted vector
z when the a priori feedback is perfect. As in the previous
section, z and z̄` belong to the same QAM symbol indexed by

Bit 3 Bit 4

Bit 1 Bit 2

0010 0110 1110 1010

1011111101110011

0001 0101 1101 1001

1000110001000000

(a) Gray mapping

1001 0011 1011 0001

1111010111010111

1010 0000 1000 0010

1100011011100100
Bit 3 Bit 4

Bit 1 Bit 2

(b) Ungerboeck mapping

0110 1001

0011

1110 1101

0100 0010

0000

1111

10100101

1000 0111

00011011

1100

Bit 1 Bit 2

Bit 3 Bit 4

(c) Optimized mapping

Fig. 3. Three mappings of 16-QAM constellation.

the integer i =
⌈

`
m

⌉
. For a given z ∈ Ω and ` = 0 . . .m.Nt−1,

let us consider

‖(z − z̄`)SH‖2 = d(z, z̄`)2
Nr−1∑

u=0

∣
∣
∣
∣
∣

Nt−1∑

v=0

sivhvu

∣
∣
∣
∣
∣

2

(16)

As only modulation symbols with index i differ, and since
matrix H is block diagonal, (16) becomes

‖(z − z̄`)SH‖2 = d(z, z̄`)2 ‖SiH‖2

= d(z, z̄`)2
∑s−1

t=0

∑nr−1
u=0

∣
∣
∣
∑nt−1

v=0 si,v+t.nt
hv,u,t

∣
∣
∣

2 (17)

where h.,.,t denotes the coefficients of the t-th channel matrix
Ht and Si is the ith row of S. Now, ∀t = 0 . . . s − 1 and
∀u = 0 . . . nr − 1,

nt−1∑

v=0

si,v+t.nt
hv,u,t ∼ N

(

0,

nt−1∑

v=0

|si,v+t.nt
|2
)

(18)

‖SiH‖2 has a generalized chi-square distribution of degree
2Nr. In the general case, there are s different variance values
in the Gaussian variables defining the chi-square law. It is
worth noting that two spreading transformations A and B
satisfying the equality ∀t = 0, . . . , s − 1

nt−1∑

v=0

|ai,v+t.nt
|2 =

nt−1∑

v=0

|bi,v+t.nt
|2 (19)
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lead to the same genie performance. When the s variances
of the Gaussian distributions are not equal, the observed
diversity order is not maximal [13]. Based on the latter
observation, we derive a first proposition for constructing S:

Proposition 1: If all the norms of the 1/s-th parts of each
row of a Nt × Nt spreading matrix are equal (Nt = nt · s),
the maximum diversity Nr = nr · s is observed at the output
of the detector of a BICM on a nt×nr ergodic MIMO channel.

In this case, when ∀t = 0, . . . , s−1,
∑nt−1

v=0 |si,v+t.nt
|2 = 1/s,

the considered distribution is chi-square with degree 2.Nr and
parameter nt/(2ns) = 1/(2s) (variance of each real dimen-
sion). Cyclotomic rotations are an example of transformations
satisfying the above norm proposition. Finally, we state the
following trivial observation: Under the constraints defined
by proposition 1, the total diversity order after precoding is
s.nr which is equivalent to s.nr receive antennas without
precoding.

2) Quasi-static MIMO channel: In this case, nc = 1 and
the same fixed nt × nr matrix H = hu,v is applied to the
precoding coefficient vector {si,t.nt

, . . . , si,(t+1).nt−1}, ∀ t =
0, . . . , s − 1. Then

‖(z − z̄`)SH‖2 = d(z, z̄`)2
s−1∑

t=0

nr−1∑

u=0

|Gt,u|2 (20)

with Gt,u =
∑nt−1

v=0 si,v+t.nt
hv,u. The probability law of

‖(z − z̄`)SH‖2 is a correlated chi-square distribution defined
by the Gaussian random variables Gt,u. To get the maximum
possible diversity, we have to properly choose the matrix S.
First, notice that ∀(t, t′) ∈ {0, . . . , s − 1}2 and ∀(u, u′) ∈
{0, . . . , nr − 1}2

u 6= u′ ⇒ E
[
Gt,uG∗

t′,u′

]
= 0 (21)

because the elements of two different columns of H are
independent.
Let us consider the case u = u′. We have E

[
hv,uh∗

v′,u

]
= 0,

∀v 6= v′. Then

∀(t, t′, u), E
[
Gt,uG∗

t′,u

]
= 0 ⇔

nt−1∑

v=0

si,v+t.nt
s∗i,v+t′.nt

= 0

(22)
Proposition 2: If the 1/s-th parts of each row of a Nt × Nt

spreading matrix are orthogonal with equal norm (Nt = nt ·s),
the maximum diversity Nr = nr · s is observed at the output
of the detector of a BICM on a quasi-static nt × nr MIMO
channel.

Of course, the maximal value for the time spreading parameter
is s = nt on the quasi-static fading channel. When the
constraints defined by proposition 2 are satisfied, the total
diversity order after precoding is s · nr which is equivalent
to s.nr receive antennas without precoding.

3) Block fading MIMO channel: In order to simplify the no-
tations, si,w,t,v will designate the coefficient si,v+(t+sw/nc)nt

of S. The first index corresponds to the line in the spreading
matrix, the second to the part of the line corresponding to

the w-th channel state, the third to the t-th time period inside
one constant channel block and the fourth to the v-th transmit
antenna. The indices i, w, t, v, u belong to the intervals i ∈
[0, ns − 1], w ∈ [0, c− 1], t ∈ [0, s/c− 1], v ∈ [0, nt − 1] and
u ∈ [0, nt − 1]. When the linear precoding matrix is affected
by nc different channel states, the same matrix Hw is applied
to the vectors {si,w,0,0, . . . , si,w,s/c−1,nt−1}. Then

‖(z − z̄`)SH‖2 = d(z, z̄`)2
nc−1∑

w=0

s/nc−1
∑

t=0

nt−1∑

u=0

|Gw,t,u|2 (23)

where Gw,t,u =
∑nt−1

v=0 si,w,t,vhv,u,w is a Gaussian random
variable. Again, we note that for two different values of w
or u the Gaussian distributions are uncorrelated since they
result from the summation of independent Gaussian variables
belonging to different channel states or different columns
of one channel matrix. The decorrelation criterion becomes,
∀(t, t′, u, w):

E
[
Gw,t,uG∗

w,t′,u

]
= 0 ⇔

nt−1∑

v=0

si,w,t,vs
∗
i,w,v,t′ = 0 (24)

Proposition 3: If the 1/nc-th parts of the rows of a Nt ×Nt

spreading matrix have the same norm (Nt = nt · s) and if in
each 1/nc-th part, the nc/s-th parts are orthogonal together
with equal norm, the maximum diversity Nr = nr · s is
observed at the output of the detector of a BICM on a block
fading nt × nr MIMO channel with nc channel states.

The maximal value for the time spreading parameter is s =
nt × nc. For the construction of a linear precoder on nt ×
nr block fading channels with nc different channel states
and a time spreading factor equal to s, we can apply a
(Nt/nc ×Nt/nc) space-time spreading matrix that maximize
the diversity for quasi-static sub-channels (proposition 2), and
then apply a general (Nt × Nt) space-time spreading matrix
that maximizes the diversity for the ergodic-like channel
(proposition 1). As mentioned before, a slight modification of
multi-dimensional cyclotomic rotations can be used as a linear
spreader in order to improve the diversity order. The algebraic
details are omitted for the sake of briefness. The expression
of the cyclotmic linear spreader is given in (25), where φ is
the Euler function.

IV. INTERLEAVER DESIGN FOR UNIVERSAL BICM

The performance after decoding C depends on the algebraic
structure of C itself and the deterministic instance of the
pseudo-random interleaver. Without linear precoding, the
maximal diversity order is nr × Min(nt.nc, dHmin), where
dHmin is the minimum Hamming distance of C. If the
BICM interleaver is well chosen, it is possible to obtain the
maximal diversity order without space-time precoding. In
such conditions, the space-time precoding is seen as another
mean for augmenting the diversity order and can be combined
to a non-optimized interleaver instance.

The interleaver Π should guarantee the minimum colum-
nwise Hamming distance criterion in order to get the tem-
poral diversity nc or dHmin, and it should guarantee the
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∀i ∈ [0, ns − 1], ∀w ∈ [0, nc − 1], ∀t ∈ [0, s/nc − 1], ∀v ∈ [0, nt − 1],

Si,v+(w.s/nc+t)nt
= 1√

Nt
exp

(

j2π
[

i
(

1
φ−1(2Nt)

+ v
Nt

+ t
s + w

nc

)

+ t
(

1
φ−1(2nt)

+ v
nt

)]) (25)

rank criterion in order to get the spatial diversity nt. Such
deterministic interleavers exist but are not necessary suited for
iterative detection/decoding of a multiple antenna BICM. The
factor graph representation [15] of a BICM shows how the
information propagates between the detector (channel nodes)
and the decoder (subcode nodes) via the sum-product algo-
rithm, see Fig. 4. Iterative APP detection/decoding converges
to the exact APP if and only if the graph has no cycles. In
our case, for a finite length interleaver, the cycle distribution
should be suited for iterative decoding, i.e., a graph distribution
with a thin tail as obtained with a pseudo-random interleaver.
Unfortunately, the exact influence of the cycles distribution
on iterative decoding and the shaping of this distribution is
still an open problem. Nevertheless, we designed a special
interleaver having both a deterministic and a pseudo-random
structure to satisfy the space-time constraint and the factor
graph constraint as well. The interleaver presented hereafter
is a good interleaver in our sense, but not necessarily the best
possible interleaver.

W W

m.ntm.nt

degree=W

degree=m.nt

Subcode node C

Channel node H

Fig. 4. Factor graph representation of BICM, the window size W is
proportionnal to the constraint length of C.

• Optimized interleaver construction for maximum di-
versity under iterative decoding
The different construction phases of the new interleaver are
described. The interleaver size is T.m.nt, where T is the time
length of a codeword.
Consecutive bits should be mapped on different time periods
over all the transmit antennas. To achieve this property, we de-
multiplex the T.m.nt coded bits into nt vectors of length T.m.
Each one is interleaved separately and mapped diagonally in
the space-time domain. This construction will be illustrated
for the quasi-static channel (nc = 1) and then extended to
the general block fading case. Let us describe the details of
the interleaver construction using the example of Fig. 5, with
nt = 4 transmit antennas, nc = 1 and m = 2 bits per
modulation symbol.

The codeword bits are colored in 4 different colors, each one
corresponding to a specific transmit antenna. This illustrates
the way the codeword is demultiplexed into nt vectors Vi,

i = 1, . . . , nt, of length T.m. Step 1 corresponds to this
demultiplexing. Only vector V1 to be transmitted on antenna 1
is illustrated, containing each fourth bit of the original vector.
By this antenna repartition, we already ensure that contiguous
bits are transmitted on different antennas.

Each vector Vi of size T.m is then interleaved in step
2 into a vector V ′

i . All nt vectors Vi are interleaved using
the same interleaver. In order to ensure a good convergence
of the iterative decoding, let us maximize the minimal cycle
length in the graph. E.g., an S-random-like interleaver may be
used, which guarantees that LI consecutive bits of Vi before
interleaving are placed in different mnt-length blocks in V ′

i

after interleaving.
In step 3, we build a nt × T.m matrix, each line of which

will be transmitted on a different antenna. Let us consider the
m.nt first columns of this matrix. The first row contains the
first m.nt values of the vector V ′

1 for antenna 1. The second
row contains the first m.nt values of the vector V ′

2 for antenna
2, shifted by m positions modulo m.nt. Rows 3 and 4 are built
from vectors V ′

3 and V ′
4 similarly. The T/nt other nt ×m.nt

matrices are constructed the same way using the following
bits of the nt vectors V ′

i . This results in a cyclic diagonal
repartition of the bits in one block of nt time periods, which
guarantees that the bits contained in one symbol period, i.e.,
in m columns of the final matrix, were originally separated by
(LI − 1).nt + 1 bit positions before interleaving. Moreover it
guarantees that LI .nt consecutive bits before interleaving are
equally distributed on all transmit antennas and mapped on
different symbol periods. Practically, the parameter LI of the
S-random-like interleaver should be chosen such that (LI −
1).nt +1 > L.n, where L is the constraint length of the code.

Step 4 rewrites the final matrix into a vector of length
T.nt.m assuming that every nth

t bit of the obtained vector
will be transmitted on the same antenna (serial to parallel
transformation before mapping of m bits into one modulation
symbol). The aim of this last step is just to design an
interleaver with an input bit stream (vector) and an output
bit stream (vector). Of course the structure of the interleaver
is related to the way bits will be processed then, i.e.,
how bits will be distributed onto antennas. From this point
of view, the matrix form resulting from step 3 is more explicit.

Let us now focus on the design for block fading channels:
nc > 1. The interleaver design is exactly the same as for
nc = 1, assuming nc.nt transmit antennas. Each vector V ′

i , i =
1, . . . , nt.nc has length T.m/nc. The first nt vectors V ′

i are
transmitted during the T/nc first time periods, the following
nt vectors V ′

i are transmitted during the following T/nc time
periods and so on. Step 4 in Fig. 1 remains the same for the
first nt rows. Then, the following nt rows are processed the
same way, and the obtained vector is written behind the vector
for the first nt rows and so on.

The number of different channel states during a codeword
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Pseudo random interleaver with a sliding input separation LI and a non-sliding output separation mnt.

Within a symbol time period, a separation of (LI − 1).nt + 1 bits is guaranteed

Fig. 5. Illustration of the interleaver construction.

may be known or not. If nc is unknown, we have to design
a universal interleaver that is efficient for any value of nc.
Note that the interleavers designed for a given value of nc

are also well designed for the smaller values of nc. However,
choosing by default a very high value for nc is not a solution,
since it limits the size T.m/nc of the S-random-like interleaver
and thus the performance of iterative decoding. Therefore, we
propose to limit nc to a sufficiently high value by diversity
considerations: It is well known [5] that a slight SNR gain
is achieved for diversity orders greater than 8. Thus, we can
limit the maximal diversity to be collected to dlim = 16.

Since the diversity is upper bounded by nr.dmin and limited
to dlim, we propose to design an interleaver adapted to
a min(dmin, dlim/nr) × nr MIMO channel, which should
collect the maximum diversity nr.min(nt.nc, dmin, dlim/nr)
for any value of nc. As already said, nc different channel states
is equivalent to a multiplication of the number of antennas by
a factor nc. Thus, the universal interleaver may be constructed
as an interleaver designed for a quasi-static channel, assuming
that we have min(dmin, dlim/nr) transmit antennas.

V. COMPUTER SIMULATION RESULTS

Fig. 6 illustrates the coding gain when comparing an opti-
mized mapping versus a classical Gray mapping for a 16-QAM
constellation. The so-called error-floor region is below 10−5.

In the waterfall region, the performance with one simple 4-
state rate 1/2 non-recursive non-systematic convolutional code
(NRNSC) is very close to that of a rate 1/2 parallel turbo code.
The BICM interleaver size is 20000 bits.

Fig. 7 shows the diversity gain with and without linear
precoding on a quasi-static channel. The time spreading is
s = 2. The precoding cyclotomic matrix is 4 × 4. Three
different convolutional codes are displayed with 2 states, 4
states and 16 states respectively.

The performance improvement due to the interleaver struc-
ture is presented in Figures 8 and 9. Fig. 8 compares a 4-
state and a 16-state convolutional codes on a 2 × 1 quasi-
static channel. For both codes, the pseudo-random interleaver
exhibits a poor error rate slope. Fig. 9 displays the frame
error rate of a 4-state code on a 4 × 2 quasi-static channel.
Obviously, the interleaver choice is critical. In all cases, the
optimized interleaver and the linear precoder lead to a final
slope identical to the outage probability one, i.e., maximum
achievable diversity.

Finally, the likelihoods involved in the sum-product al-
gorithm on the channel nodes of the BICM factor graph
are evaluated exhaustively when the complexity is tractable.
Otherwise, if m · Nt ≥ 16, the evaluation is made by a soft
output sphere decoder [20].
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Fig. 6. Performance of a 4-state rate 1/2 convolutional code versus parallel
turbo code, 16-QAM constellation, 4x4 MIMO ergodic channel.
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