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Abstract

A new joint detection method based on sphere packing lattice decoding is pre-
sented in this paper. The algorithm is suitable for both synchronous and asyn-
chronous multiple access DS-CDMA systems, and it may jointly detect up to 64
users with a reasonable complexity. The detection complexity is independent of the
modulation size and large M-PAM or M-QAM constellations can be used. Further-
more, a theoretical gain analysis is performed in which the multiple access system

performance is derived from the lattice parameters.
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1 Introduction

In this paper, a new low complexity joint detection algorithm for direct sequence (DS)
multiple access systems is proposed. The algorithm is optimal (in the maximum likeli-
hood sense) for synchronous code division multiple access (CDMA) systems. The receiver
models the despreader output as a multidimensional lattice point (sphere packing) cor-
rupted by noise and applies a lattice decoding algorithm to jointly detect all users. In the
asynchronous case, the lattice decoder is combined with an interference canceler and its
performance remains excellent despite its sub-optimality.

The paper is organized as follows: In section 2 the synchronous multiple access trans-
mitter structure and its lattice representation are described. In section 3 the sphere
decoding algorithm, which is a low complexity maximum likelihood (ML) decoder for
lattice constellations, is presented. Then, sphere decoding is applied to ML detection of
synchronous direct sequence spread spectrum multiple access (DS-SSMA) in section 4.
In section 5 the combination of sphere decoding and interference cancellation for the
joint demodulation of asynchronous DS-SSMA is investigated. In section 6, an analyt-
ical approximation for the system gain is derived from the lattice parameters. Simula-
tion results for synchronous and asynchronous systems on additive white gaussian noise
(AWGN) channel are presented in section 7 and compared with those of multistage suc-
cessive interference cancellation (PIC) [13][14], decision-feedback minimum mean square
error detector (DF-MMSE) [9], and Viterbi based algorithm (Verdu joint detector [15]).

Conclusions are finally drawn in section 8.

2 Lattice Representation of Synchronous
Multiuser Systems

Let us first consider a synchronous CDMA system with K users. The symbol b (i) of user

k transmitted at time ¢ is taken from an integer alphabet A of cardinality |.4|. Each user



k transmits a block of N symbols with signal amplitude wy. The symbols are spread by
a real signature s (¢) with symbol duration 7', s (¢t) = 0if ¢t ¢ [0, 7). The K transmitted
data symbols are placed in a row vector b(i) defined as b(i) = (by(4),...,bx(i)). The

corresponding modulated signal is
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We assume that the channel is an ideal AWGN channel. Let r, = S;+n; be the received
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signal and 7, a real Gaussian noise with zero mean and variance N,. A sufficient statistic
for ML detection of b(i) is y(i) = (y1(i),...,yx(i)), where yx(i) is the matched filter

output of user k defined as:
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The cross-correlation coefficients of the noise vector n(i) = (ny(4),...,nk(7)) are
T
Elne(i)ng(i)] = RuNo with Re, = / sese)dt for kl=1...K. (2)
0

Let D, be the diagonal matrix Diag(wy,...,wg) and R = [Rg] the K x K signature

cross-correlation matrix. Then, expression (1) becomes

y(i) = b(i)M + n(i), (3)

where the K x K matrix M is defined as M = D R.

The vector y(7) in (3) can be viewed as a point of a K-dimensional lattice sphere packing
A [6] with generator matrix M corrupted by a noise n(7). If the signatures are well chosen
and all power amplitudes are strictly positive, the lattice A is a Z-module of rank K of
the K-dimensional real space IRX. The rows of M form a basis of A. The multiple access

signal generates a point b(i)M belonging to a constellation, i.e., a finite subset of A, of

size |A[X.



This lattice representation of multiuser systems allows us to use an efficient ML lattice
decoding algorithm called the Universal Lattice Decoder [17][18], also known as the Sphere
Decoder [3]. The sphere decoder is capable of decoding any lattice defined by an arbitrary
generator matrix M. The version presented below is based on enumerating points inside
a sphere according to the Pohst strategy [10][7]. Alternative strategies are presented in a

recent tutorial by Agrell et al [1].

3 Sphere Decoding with White Gaussian Noise

Let us first describe the ML decoding of a K-dimensional lattice A used over an AWGN
channel and generated by a real K x K matrix G. The decoder must find the closest

lattice point to the received vector, which is equivalent to minimizing the metric

K
m(ylx) = lyi — * = [ly — x|, (4)
i=1

where y = x-+m is the received vector, n= (1, . .., k) is the noise vector and x = (z1,...,7x)
is a point belonging to A. The noise vector n has real Gaussian distributed independent
components with zero mean and variance . The lattice points {x = bG} are obtained
from the data vectors b = (by,...,bx) where the components b; belong to the ring of

integers Z.

In practice, the set of data vectors is limited to an alphabet AX ¢ Z¥ and an exhaustive
ML decoder looks for the best point x in the whole finite constellation. The Sphere
Decoder restricts its computation to the points which are found inside a sphere of a given
radius v/C' centered at the received point, as depicted in Fig. 1. Thus only the lattice
points within the squared distance C' from the received point are considered in the metric

minimization of (4). The decoder performs the following optimization

min [ly —x|| = min {jwi. (5)



The above equality indicates that we must find the shortest vector w in the translated
set y — A. We write the received vector and the difference as y =pG and w =£G
respectively, with & = (&,,...,¢x) € R¥ and p = (p1,...,px) € R .

In the new coordinate system defined by &, the sphere of squared radius C' centered at y

is transformed into an ellipsoid centered at the origin, defined by
lw|> =¢GG"¢" < C. (6)

Cholesky’s factorization [5] of the Gram matrix I' = GG” yields ' = AAT, where A
is a lower triangular matrix with elements a;;. Using (6), it was shown that point x
is included in the search sphere if and only if the integer components of b satisfy the

following inequalities [17][18]:

C C
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Qii t=i+1 j=t+1 j=i+1

where ¢;; = aZ for i =1,..., K and ¢;; = a;j/a; for j=1,..., K, i=j+1,...,K. The
function [z is the ceil function and |z | is the floor function. The lower and upper bounds
in (7) tell us that the sphere decoder has K internal counters b;, i.e., one counter per
dimension. We thus enumerate all values of vector b for which the corresponding lattice
point x = bG is within the squared distance C' from the received point. Lattice points
outside the given sphere are never tested. Consequently, the decoding complexity does
not depend on the size |A|X of the lattice constellation. Finally, we select the best point

x as the one associated to the minimal Euclidean norm ||w||. During the enumeration
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of all points located in the search sphere, the radius v/C' may be updated by the norm
||w|| found at the current enumerated point. Points located in the initial sphere beyond
the updated radius are not selected by the decoder. The update of v/C' by every newly
computed ||w|| guaranties that all points in the new search sphere have a norm smaller
or equal to ||w/||. Thus, the points in this sphere are good candidates for ML detection.
This radius update dramatically accelerates the closest point search.

For more details on the sphere decoding implementation, the reader is referred to [18].

The search radius v/C must be properly chosen. Indeed, the number of lattice points lying
inside the decoding sphere increases with C'. Therefore, a large value of C' slows down the
algorithm, whereas the search sphere may be empty if C is chosen too small. In order to
ensure that at least one lattice point is found by the sphere decoder, the search radius
has to be greater than the lattice covering radius, e.g., select a radius value equal to the

Rogers upper bound [6]

 1det(@)]

VC" = (Klog K + K loglog K + 5K) ==,
K

where Vi is the volume of a sphere of radius 1 in the real space IRX. As we consider a
finite constellation of the lattice, it may occur that no lattice point in the sphere belongs
to the constellation. This decoding failure is overcome by slightly increasing the search

radius and performing the sphere decoding again.

4 Decoding of a Synchronous Multiple Access
System

The additive noise samples included in the system model (3) are correlated. This correla-
tion is produced by the non-zero cross-correlation between the different users signatures,

see (2). The ML lattice decoder must minimize the following metric

m!(y (i) (i) = (y(i) — x(i)) R~ (y (i) — x(i))". (8)
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The sphere decoder equations can be easily adapted to the optimization of metric (8).
This is equivalent to ML decoding of a lattice A’ with a generator matrix M in the pres-
ence of a colored noise n(7). Nevertheless, we prefer to whiten the noise at the output
of the matched filter bank in order to use the decoding procedure given in the previous
section. Note that all studies of lattice sphere packing performance have been done in
the additive white Gaussian noise case. The noise whitening will also help us to simplify
the analytical study of lattice parameters’ impact on the CDMA error rate presented in

section 6.

The noise whitening operation performed before the lattice decoder is similar to what
is widely known in equalization theory [12]. The Cholesky’s factorization of the cross-
correlation matrix R yields R = WW7, where W is a lower triangular matrix. The
whitened observation is defined as §(i) = y(i)W7” ' and the new lattice point is given

by %(i) = x({)W7T . Finally, the whole CDMA system model is illustrated in Fig. 2.

Now, we write the relation between the lattice point X(¢) and the data vector b(i)
%(i) = x())WT™ = b(i)MW"'™" = b(i)D,W (9)

Equation (9) shows that the whitening operation results in a new lattice with generator
matrix G = D,W. Therefore the new received point y(i) is processed with a sphere
decoder associated to this new lattice. Since D,/ W is already a lower triangular matrix,
the Cholesky’s factorization preceding the sphere search given by inequalities (7) can be
omitted (A = G), or equivalently, the triangular factorization has been transfered from

the decoder to the noise whitener.



5 Sphere Decoding with Interference Cancellation
for Asynchronous Multiuser Systems

Let us now consider an asynchronous multiuser system. User k£ has a delay 7,. We assume
that 0 < 7y < 1 < ... < 7 < T. As shown in Fig. 3, each symbol of a given user
interferes with one or two symbols from other users. The latter symbols interfere also
with other symbols and it is impossible to define a finite dimensional lattice to describe
the system as we did in section 2. To solve this problem we combine the lattice decoder
with a subtractive interference canceler. The detection of symbol by (i) takes into account
its entire despreading, the partial despreading of future symbols of other users and the

partial correlations with past symbols of other users.

The joint processing of symbols b; (i) at time ¢ starts after finishing the detection of all
symbols b;(i — 1), j = 1...K. The detection at time ¢ is performed in an increasing
order of k, i.e., the demodulation of bg(7) uses the symbols by (2), by (7)), .. ., bp_1(7) already
detected and the previous symbols by 1(i — 1), bgi2(i — 1),...,bg (i — 1). The detection
procedure for a given user k at time ¢ depends on three vectors: the past symbols b, the
future symbols bg and the observation vector y¢ = (yf1,...,ysx). The symbol vectors

by = (byts -+ s byic) = (b1 (3), -+ b1 (8), bio(i — 1), boga (6 — 1), -, by (i — 1))

be = (b1, bpxc) = (i + 1), b1 (i + 1), bp(a), bsr (i), - - ., bic (i)

When decoding symbol by (i), the observation y, associated to by, is the result of a partial

despreading of duration ¢, beginning with symbol b, and ending with symbol b (7). Thus

the = T — Ty for (< k

tkg = T+Tk—Tg for Ezk'



Let 3;, denote the cross-correlation between symbols bs; and bg,. Let o, denote the cross-

correlation between symbol b;(i) and the previously detected symbol of user ¢. We can

express the observation vector y¢ = (ys1,...,ysk) associated to the detection of by (i) as
vri = wibibei+ X wetiebpe+ 3 wibBjebe +n; for j <k
J<t<k L#j
yri = wibiibi + D weatjebpe + D weBjebge +m; for j=4k
4] L#£j
Y = wjﬁjjbfj + Z Wg&jszz + szajébpé + Zwﬂﬁjébfé + N for ] >k (10)
<k £>5 L£]

Equations (10) can be simply written in matrix form:

ye = bpD, Ry, +bsD Rs +n (11)

where R¢ =[], n is an additive Gaussian noise with covariance matrix NyR¢ and

0 0 0 0 0 aq g a1 k41 a1 K
a1 0 0 e 0 0  agyp 02 fy1 e s K
Qs Q32 0 e 0
Qp_21 Qp_22 ‘' QF_2k3 0 0 ap_2r Qp—2k+1 e Qp_2 K
Rp = Ap—-11 Qg—1,2 *°° Qg—-1k-3 OQk—1k-2 0 Ap—1k Qk—1,k+1 " Ap—1,K
0 0 - 0 0 0 0 0 0 - 0
0 - 0 0 sk 0 0 - 0
0 0 0 apy2r a2kt O 0
. 0 0 e 0 0 0 ark—1k QK—1k+1 **° OKK-1 0 J

There exist K different pairs of matrices R, and Rg, each one for the detection of one
user. Symbols included in by, are already detected, so we can subtract the past interference
b,D, R, from the observation y¢ to obtain a new observation z¢ delivered to the lattice

decoder,

Zr = Yf — prpr = bewa +n

The above vector z¢ is a lattice point corrupted with colored noise. Hence, we can apply

results of section 4 to detect by (i) using a sphere decoder in the K-dimensional real space.
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Note that K lattice-decoding steps are needed to demodulate the K users at a given time

1, whereas one decoding step suffices to jointly decode all users in the synchronous system.

6 Analytical Performance
Derived from the Lattice Parameters

We now compute an analytical bound for the system gain by studying the structure of
the embedded lattice constellation. For simplicity reasons, it is assumed that all users are
synchronous and that the multiple access medium is an ideal AWGN channel. The point
error probability P, of a cubic constellation S is approximated by [4]

P, ~ ﬂerfc ( 3—<@7(A))

2 2CHL N,

where 7(A) is the first shell population number (kissing number), erfc is the complemen-
tary error function, ¢ is the number of bits per two dimensions, F}, is the bandpass average

energy per bit. The fundamental gain v(A) is given by [8]

() = e (12)

for a K-dimensional lattice with minimal Euclidean distance dgnmi, and a fundamental
volume vol(A). The fundamental gain, also known as Hermite constant [6], is equivalent
to the normalized Euclidean distance of a trellis coded modulation [2], and gives its
asymptotic signal-to-noise ratio (SNR) gain. If G is the generator matrix of A, vol(A) =
| det(G)|. The energy ratio v(A) stands for the gain of A when the integer lattice Z* is
taken as a reference. Recall that v(Z*) = 1 and that v(A) depends only on the lattice
structure. When the constellation S is not of cubic shape, the total gain (.S) is equal to
the product of the fundamental gain and the shaping gain vs(S), where the latter depends

on the constellation second moment [§],



Let ||b||%.,.. be the second moment of the integer constellation Sype obtained from the

concatenation of the K users symbols. Let ||X||?4 be the second moment of the constella-

tion S. We assume that S and Sc,pe have the same volume. Thus, equation (9) becomes

x =bG/ {/|det(G)| and a simple calculation gives the formula of the shaping gain

(S) _ ||b||2cube _ K- K/V2 det(G) (13)
TWTRE, T Trace(T)

Now, let us study the simple case of a synchronous K = 2 users system. We assume
that user 1 has unit amplitude and user 2 has amplitude w > 1. The cross-correlation
coefficient is denoted f € [0,1]. Then, the cross-correlation matrix R and the generator

matrix of the associated lattice are

1 8 1 0
R = and G=D,W =
g1 wh w1 - p?

The CDMA system performance is compared to that of a reference system defined by a

constellation S,. This reference constellation is cubic shaped and corresponds to the ideal

case of 2 orthogonal signatures (8 = 0, d%,,;, = 1), we have
7o) = W™
75(%) = 1 —2|-ww2
(Se) = 1 —|—2w2 (14

Finally, the total gain 7/(.S) of the CDMA system is defined as the ratio of v(S) to v(S,),

! d2min ]_+(.U2
() = fEmnllte)

Trace(T) (15)

The lattice minimum squared distance, d%, ., can be determined by !

d?> = min (1, [ 2nw5)

'We would like to emphasize that in some exceptional cases, e.g., 8 close to 1.0, the distance d may

not equal the true minimum distance.
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where k is the nearest integer to wf3. Thus, we can write
Trace(T') = Trace(GGT) = 1 + w? (16)

From (15) and (16), we get a simple expression for the total gain of the multiple access
system

+(8) = & (17)

Consequently, as long as d> = 1, there is no global performance loss in our system. In
other words, the joint detection shows a zero loss in performance for small and medium
values of the correlation coefficient. The theoretical gain in (17), expressed in decibels and
illustrated versus 3, will be compared to the effective gain measured by computer simu-
lation in the next section. This theoretical gain is equivalent to the asymptotic efficiency

of the DS-CDMA system [16].

7 Simulation Results

In a first scenario, the sphere decoding algorithm has been applied to jointly detect 4
and 7 users in a direct sequence SSMA system. The signatures are Gold sequences with
period 7 (spreading factor=7). The first user has a fixed transmit power. All other users
have equal transmit power and we vary their signal-to-noise ratio to observe the near-
far effect on the first user. The results are compared with those of a PIC detector with
hard cancellation and a decision feedback MMSE joint equalizer. At the first iteration of
the PIC detector, the contributions of interfering users are successively subtracted from
the received signal by decreasing order of transmit power, which is not necessarily the
optimum order. In the following iterations, parallel interference cancellation is performed.
The total number of iterations is 3.

Consider a model of synchronous transmission with BPSK modulation on a Gaussian
channel. Fig. 4 depicts the ML performance of the sphere decoder. It is very near-far

resistant compared to the PIC detector. The performances of different users are similar
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contrary to those of the PIC which depend on the cross-correlation values. For user 4, we
observe a 5.5 dB gain for the sphere decoder with respect to the PIC detector.

In Fig. 5, with a 16-PAM modulation and 7 users, the sphere decoder outperforms the
DF-MMSE detector. An exhaustive ML detector would have to compute 16* = 65536
metrics to detect each point!

Tables 1 and 2 compare the complexity of the sphere decoder with that of the exhaustive
search when both perform an ML joint CDMA detection. All users transmit 16-PAM
signals with the same transmit power equal to 19 dB. The average complexity of the
sphere decoder has been measured by counting all the operations executed in our simula-
tion program. The lower the SNR, the larger the variance of the complexity. The search
radius has been determined from Rogers bound. A further reduction of the number of
operations can be achieved with the LLL algorithm [5][11], especially in a near-far effect

situation.

To illustrate the relative low complexity of sphere decoding, let us consider a synchronous
system with 63 users using 16-PAM modulation and spread by a factor 63. Two sets of
spreading sequences are used. The first set contains 63 Gold sequences of length 63. The
repartition of the non trivial cross-correlation absolute values is: 17/63 (12 occurrences),
15/63 (17 occurrences), 1/63 (3876 occurrences). The second set contains 63 highly cor-
related purely theoretical sequences of length 63. In the latter case, all non trivial cross-
correlations absolute values are equal to 21/63. All users have the same transmit power.
In Fig. 6, performance results with both sequence sets are depicted versus the SNR of
all users. Although the system is highly loaded, the single-user performance is reached
with Gold sequences, whereas a low degradation of 0.5 dB is observed at an average bit
error rate (BER) equal to 10~° when using highly correlated sequences. This shows that,
even with highly correlated sequences, the ML performance is near the single-user per-

formance, i.e., the multiuser efficiency is close to 1.
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Let us now consider an asynchronous multiple access system. The time delays are 0, 2,
4 and 6 chips for 4 users. The results are represented in Fig. 7. It is clear that the pure
ML detector based on Viterbi algorithm has the lowest error rate. However, the combina-
tion of sphere decoding and interference cancellation still outperforms the PIC detector.
Fig. 8 depictes the BER with a 4-PAM asynchronous system for 7 users and a spreading
factor 7. The system has a full load. The sphere decoder has the best average error rate
because its worst user is well protected. The DF-MMSE detector exhibits a relatively

large difference between the performance of the best and the worst users.

Finally, we represented in Fig. 9 the theoretical global gain given by (17) in section 6 for
2 users with a signal-to-noise ratio difference ASNR = 0,3 dB. This gain is compared
with the one derived from computer simulations. As predicted by information theory, the
bigger ASNR is, the higher the gain is ! In fact, the strongest user has a negligible effect
on the global bit error rate. Thus, the global gain is roughly related to the weakest user.

The latter is less sensitive to cross-correlation variations since its error rate is higher.

8 Conclusions

In this paper, we proposed a new joint detection technique based on lattice (sphere
packing) decoding using the sphere decoding algorithm. The algorithm is optimal in syn-
chronous systems and exhibits excellent performance when users are asynchronous. The
algorithm may jointly detect up to 64 users which is a practical limit for the complexity
of the sphere decoding [18]. Indeed, in the worst case, the kernel of the sphere decoder
has a complexity proportional to K® [7]. Furthermore, the detection complexity does not
depend on the modulation size and large M-PAM or M-QAM constellations can be used.
We also derived a theoretical gain analysis where the performance is derived from the lat-
tice parameters. The sphere decoder is clearly more complex than linear joint detectors,

but its complexity gain is significant versus the ML exhaustive or Viterbi algorithm, es-

14



pecially for large modulation alphabets. The use of such modulations could be suggested
to increase the spectral efficiency of DS-CDMA mobile radio systems. For example, in
the European UMTS standard, the combination of several services belonging to the same
user makes the final modulated signal behave like a large alphabet signal.

Finally, the authors would like to indicate that the sphere decoder is applicable to any
communication system satisfying a constraint similar to (3). This includes multi-antenna

and multi-carrier systems.
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K | Additions | Multiplications | Divisions | Square Roots | Total Total

per user per user per user per user per user | for all K users
4 111 68 14 14 208 832
7 480 332 49 49 910 6371

Table 1: Complexity of the joint ML detector based on the sphere decoder (without LLL)

for 16-PAM modulation. The search radius is derived from Rogers bound.
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K | Additions | Multiplications | Total Total

per user per user per user | for all K users
4 10° 10° 2.10° 8.10°
7 6.108 6.108 12.108 8.10°

Table 2: Complexity of the joint ML detector based on exhaustive search for 16-PAM

modulation.
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Figure 1: Geometrical representation of the sphere decoding algorithm.
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