
1

Branch-and-Bound-Based Fast Optimal Algorithm
for Multiuser Detection in Synchronous CDMA

J. Luo, K. Pattipati, P. Willett, L. Brunel

Abstract— A fast optimal algorithm based on the branch
and bound (BBD) method is proposed for the joint detection
of binary symbols of K users in a synchronous Code-Division
Multiple Access (CDMA) channel with Gaussian noise. Re-
lationships between the proposed algorithms (depth-first
BBD and fast BBD) and both the decorrelating decision
feedback (DF) detector and sphere decoding (SD) algorithm
are clearly drawn. It turns out that decorrelating DF de-
tector corresponds to a “one-pass” depth-first BBD; sphere
decoding is in fact a type of depth-first BBD, but one that
can be improved considerably via tight upper bounds and
user ordering as in our fast BBD.

I. Introduction

ALTHOUGH the Maximum Likelihood (ML) multiuser
detection in synchronous CDMA is generally NP-

hard [1], the optimal algorithm often serves as a bench-
mark against which to evaluate the sub-optimal algorithms.
Since the multiuser detection problem can be viewed as a
binary quadratic programming problem, smart search tech-
niques, such as a branch and bound (BBD) method based
on tight lower and upper bounds and user ordering, can
speed up the solution process significantly. Prior research
on using BBD algorithm to multiuser detection includes
[5]. An optimal algorithm based on sphere decoding (SD)
was also proposed recently in [6] and [7]. These results
show that the average computational cost can be signifi-
cantly less than that of the worst case one for an optimal
multiuser detector.

Prior research on optimal multiuser detection used only
the quadratic cost function and the binary constraints on
user signals. Problem-domain information in the form of
matched filter outputs being generated from a known sta-
tistical model is essentially ignored. In this paper, we pro-
pose a fast optimal BBD algorithm, and show that using
the statistical information in the matched filter outputs
significantly reduces the average computational cost of the
optimal multiuser detector.

II. Problem Formulation and Existing Methods

A discrete-time equivalent model for the matched-filter
outputs at the receiver of a CDMA channel using BPSK
modulation is given by the K-length vector [1]

y = Hb + n (1)

J. Luo is with the Institute for Systems Research, Univ. of
Maryland, College Park, MD20742, USA. K. Pattipati, P. Willett
are with the ECE Dept., Univ. of Connecticut, Storrs, CT06269,
USA. L. Brunel is with the Mitsubishi Electric ITE, 80 av. des
Buttes de Coesmes, 35700 Rennes, France. Contact authors’ e-
mail:krishna@engr.uconn.edu

1This work was supported by the Office of Naval Research under
contract #N00014-98-1-0465, #N00014-00-1-0101, and by NUWC
under contract N66604-1-99-5021

where b ∈ {−1, +1}K denotes the K-length vector of bits
transmitted by the K active users. Here H = WRW
is a nonnegative definite signature waveform correlation
matrix, R is the normalized correlation matrix, W is a
diagonal matrix whose kth diagonal element, wkk, is the
square root of the received signal energy per bit of the kth

user, and n is a real-valued zero-mean Gaussian random
vector with a covariance matrix σ2H . Letting H = LTL
be the Cholesky decomposition of H , the system can also
be represented by a white noise model

ỹ = L−Ty = Lb + v (2)

where v = L−Tn is a white Gaussian noise with zero mean
and covariance σ2I .

When all the user signals are equally probable, the opti-
mal solution of (1) is the output of a ML detector [1]

φML : b̂ = arg min
b∈{−1,+1}K

(
bTHb − 2yTb

)
(3)

The decorrelating DF method is described in [3]. If we
denote the ith component of a vector y by yi and denote the
(i, j)th component of a matrix A by aij , the decorrelating
DF detector can be characterized by

φDF : b̂ = Pb̃, b̃i = sign

 K∑

j=1

fij [Py]j −
i−1∑
j=1

aij b̃j

 (4)

where F = U
(
[PHPT]−1

)
, A = L(FPHPT). Here, U(·)

represents the upper triangular part of a matrix, L(·) repre-
sents the strictly lower triangular part of a matrix, and P is
a permutation matrix. The choice of P has been discussed
in Theorem 1 of [3].

III. Optimal Algorithm Based on Depth-first
BBD (Simplified Version of Fast BBD)

The idea of using a BBD method in solving combina-
tional optimization problems is already well known [4]. In
multiuser detection, BBD method with breadth-first search
has been used in [5] to find the minimum distance. In this
section, we present an optimal algorithm based on BBD
with depth-first search. We point out the relationship be-
tween the proposed depth-first BBD method, the decorre-
lating DF detector, as well as the SD detector [6] [7]. For
the convenience of the readers, the algorithm presented in
this section is a simplified version of the fast BBD algo-
rithm. The fast optimal algorithm that fully utilizes the
statistical information in (1) is proposed and studied in
section IV.

2

A. Depth-first BBD Algorithm

Since H−1 = L−1L−T , define D = Lb, we have

φML : b̂ = arg min
b∈{−1,+1}K

‖Lb − ỹ‖2
2

= arg min
b∈{−1,+1}K

K∑
k=1

(Dk − ỹk)2 (5)

Here, since L is a lower triangular matrix, Dk depends only
on (b1, b2, . . . , bk). When the decisions for the first k users
are fixed, the term ξk =

∑k
i=1(Di−ỹi)2 can serve as a lower

bound of (5). It can be easily seen that the lower bound
is achievable when the binary constraints on (bk+1, . . . , bK)
are disregarded. The BBD tree search to find the minimum
value of ‖D − ỹ‖2

2 is described below.
Similar to a general BBD method [4], the algorithm

maintains a node stack called OPEN , and a scalar called
UPPER, which is equal to the minimum feasible cost
found so far, i.e., the “current-best” solution. Define k to
be the level of a node (virtual root node has level 0). Label
the branch which connects the two nodes (b1, . . . , bk−1) and
(b1, . . . , bk) with Dk(b1, b2, . . . , bk). The node (b1, . . . , bk)
is labeled with the lower bound ξk. Also, define z k =
ỹ−∑k

i=1 bil i, where l i denotes the ith column of L. Denote
[zk]j as the jth component of vector z k. The depth-first
BBD algorithm proceeds as follows.

Depth-first BBD Algorithm (Simplified Version
of the Fast BBD):

1) Order users according to theorem 1 of [3], which
is also presented in Proposition 2 of section IV below.
Compute y , H and L matrices for the ordered system.

2) Precompute ỹ = L−Ty .
3) Initialize k = 0. z k = ỹ , ξk = 0, UPPER = +∞

and OPEN = NULL.
4) Set k = k + 1. For both nodes, let z k = z k−1,

ξk = ξk−1. Choose the node in level k such that
bk = sign ([zk]k). Set flag f = 1.

5) Compute [zk]k = [zk]k − bklkk.
6) Compute ξk = ξk + (Dk − ỹk)2 = ξk + [zk]2k.
7) If ξk ≥ UPPER and the OPEN list is not empty,

drop this node. Pick the node from the end of the
OPEN list, set k, ξ and z k equal to the stored values
associated with this node. Set flag f = 0 and go to
step 5).

8) If ξk < UPPER and k < K, ∀j > k precompute
[zk]j = [zk]j − bkljk. If f = 1, append the other node
with bk = −sign ([zk]k) to the end of the OPEN list,
and store the associated k, ξ, z k together with this
node. Go to step 4).

9) If ξk < UPPER, k = K and the OPEN list is
not empty, update the “current-best” solution and
UPPER = ξk. Pick the node from the end of the
OPEN list, set k, ξ and z k equal to the stored values
associated with this node. Set flag f = 0 and go to
step 5).

10) If ξk < UPPER, k = K and the OPEN list
is empty, update the “current-best” solution and
UPPER = ξk.

11) For all other cases, stop and report the “current-
best” solution.

The computational cost for step 1) is K(K+1)
2 multiplica-

tions and K(K−1)
2 additions. Steps 5) and 6) need 2 addi-

tion and 1 multiplication. Notice that step 1) is outside the
BBD search. In step 8), since bk can only take known dis-
crete values, bklk can be precomputed and stored; hence,
only K − k additions are needed to obtain z k. To update
the lower bound for a node on level K−k+1 (k = 1, ..., K),
at most k + 1 additions and 1 multiplication are needed.
In addition, the computational requirements for finding the
first feasible solution (also the optimal solution in the noise-
free case) are K(K+3)

2 multiplications and K(K + 1) addi-
tions.

B. Relationship Between the Depth-first BBD and the
Decorrelating DF Detector

Proposition 1: The first feasible solution obtained from
the above depth-first BBD search is the solution of decor-
relating DF method.

Proof: Check Proposition 1 of [8] for the proof.

C. Relationship Between the Depth-first BBD and the
Sphere Decoder

Sphere decoder is a well known efficient lattice decoding
algorithm and was introduced to the multiuser detection
community recently in [6] [7]. In this subsection, we first
rewrite the SD algorithm as follows:

Sphere Decoding Algorithm:
1) Compute the Cholesky decomposition matrix H =

LTL.
2) Precompute ỹ = L−Ty , C = αKσ2 where α is chosen

so that [7]

∫ αK

0

λK/2−1

Γ(K/2)
e−λdλ = 0.99 (6)

3) Initialize k = 0, z k = ỹ , ξk = 0. Initialize UPPER =
C. Initialize OPEN = NULL.

4) Set k = k + 1. For both nodes, let z k = z k−1,
ξk = ξk−1. Choose the node in level k such that
bk = −1. Append the node with bk = +1 to the
end of the OPEN list, and store the associated k, ξ
and z k together with this node.

5) Compute [zk]k = [zk]k − bklkk.
6) Compute ξk = ξk + (Dk − ỹk)2 = ξk + [zk]2k.
7) If ξk ≥ UPPER and the OPEN list is not empty,

drop this node. Pick the node from the end of the
OPEN list, set k, ξ and z k equal to the stored values
associated with this node and go to step 5).

8) If ξk < UPPER and k < K, for j = k + 1, precom-
pute [zk]j = [zk]j −

∑k
i=1 bilji. Go to step 4).

9) If ξk < UPPER, k = K and the OPEN list is
not empty, update the “current-best” solution and
UPPER = ξk. Pick the node from the end of the
OPEN list, set k, ξ and z k equal to the stored values
associated with this node and go to step 5).

3

10) If ξk < UPPER, k = K and the OPEN list
is empty, update the “current-best” solution and
UPPER = ξk.

11) If no solution is available yet, let C = 2C and go to
step 3). Otherwise, stop and report the “current-best”
solution.

Although written in a different form with a different no-
tation, it is easy to show that the above algorithm is indeed
identical to the SD methods proposed in [6] and [7] 1. Ap-
parently, the SD method can be categorized as a depth-first
BBD algorithm. The major differences between the SD and
the proposed depth-first BBD algorithm, however, are in
steps 1), 3), 4) and 8). The lower bound update is also
identical to the breadth-first BBD algorithm proposed in
[5].

As we have shown before, the choice of bk in step 4) of
the proposed depth-first BBD corresponds to the solution
of the DF detector. This guarantees a minimum computa-
tional cost when the system is noise-free. It is also a key
step that allows the fast optimal BBD algorithm (proposed
in the next section) to further use of the statistical infor-
mation. However, these enhancements are not exploited
in the SD algorithm because statistical information in the
model is ignored in step 4).

The user ordering corresponding to step 1), the lower
bound computations corresponding to step 8), the upper
bound initialization corresponding to step 3) are studied
in the next section.

IV. Fast Optimal BBD Algorithm Using the
Statistical Information (Full Version)

A key feature of multiuser detection is that the matched-
filter output y is generated from a statistical model given
by (1). Typically, the variance of the noise is not very large,
which means that a significant fraction of optimal multiuser
detection problems can be solved easily. In this section,
we present the full version of the fast optimal algorithm.
The key ideas of utilizing the statistical information are:
the user ordering, the search strategy and the lower bound
computation.

The BBD search can be separated into two stages. We
term the first stage the “search” stage where the “current-
best” solution is not the optimal solution. The second stage
is termed the “confirm” stage where the “current-best” so-
lution is optimal, but the algorithm needs to confirm that
it is indeed better than any other solution.

Assume that the true solution b̄ is also the maximum
likelihood solution. In the “confirm” stage, we have

UPPER =
∥∥∥Lb̄ − L−Ty

∥∥∥2

2
= ‖v‖2

2 (7)

Asymptotically, ‖v‖2
2 → 0.

1Two different upper bound initializations are proposed for the SD
algorithm in [6] and [7]. According to computer simulations, the
average computational complexity of the SD in [6] is higher than the
one in [7], both in the low and the high SNR regimes. Bounding
and sphere-enlargement parameters respectively in steps 2) and 11)
may be better coordinated, but no suggestions of such tuning have
appeared to date.

Now, consider any other branch associated with vector
(b1, b2, . . . , bk). Without loss of generality, suppose ∀j < k,
bj = b̄j , and bk �= b̄k. The lower bound is

ξk =
k∑

i=1

(Di − ỹi)2 =
k−1∑
i=1

(vi)2 + (vk ± 2lkk)2 (8)

Apparently, when σ → 0, ξk → 4l2kk. This shows that,
asymptotically, whenever the algorithm enters the “con-
firm” stage, all the branches will be discarded with a high
probability.

A. User Ordering

According to the above intuitive analysis, the major task
in the “search” stage is to maximize the probability that
the “current-best” solution is optimal, so that the algo-
rithm can enter the “confirm” stage as soon as possible.
For the DF detector, which gives the first feasible solution
in the fast BBD, define Pe(k) to be the probability of error
on user k given that all the decisions on users 1, . . . , k − 1
are correct. We have from [3],

Pe(k) = Q(
lkk

σ
) (9)

In the high SNR regime, the probability of error of the
DF solution is dominated by the user corresponding to the
minimum diagonal element of L.

Proposition 2: The user ordering presented in Theo-
rem 1 of [3] maximizes the asymptotic probability that all
decisions of the decorrelating DF detector are correct, i.e.,
it maximizes the probability that the first feasible solution
in the fast BBD algorithm is optimal.

Proof: See Proposition 1 of [2].

B. Search Strategy

In the high SNR regime, defining Pe(1st) to be the
probability of error of the first feasible solution, we have
Pe(1st) =

∑K
i=1 Q(lii

σ). Define

m1 = argmin
j

ljj

mi = arg min
j �=m1,...,mi−1

ljj (10)

Given that the first feasible solution is not optimal, user
m1 has a high probability to be the erroneous user since
Q(lm1m1

σ) dominates Pe(1st). Consequently, swapping the
decision on user m1 and applying DF detection to find the
second feasible solution is the best choice. The probability
that neither the first nor the second feasible solutions is
optimal is given by Pe(2nd) =

∑
i�=m1

Q(lii

σ). Similarly,
m2 is the next user we should search, and m3 should be
searched after m2, etc.

Apparently, unlike the search strategy in the depth-first
BBD, which searches nodes in descending order of their
levels in the tree, the optimal search strategy visits nodes
in ascending order of the values of the diagonal elements of
L matrix.

4

Due to the dynamic choice of which node to explore
next, the worst case storage requirement (i.e., of previously-
visited-node data) is exponential. The fixed search strat-
egy of the depth-first BBD, including the SD, obviates this;
but likewise do other versions of BBD that perform a smart
search only on certain users. Extreme demands on mem-
ory are rare, but if they are of concern it is worthwhile
to recall that there is a continuum of trade-offs between
memory and speed.

C. Computational Enhancement

Step 8) of the SD algorithm precomputes part of the
lower bounds for the sibling nodes. However, it does
not take advantage of the fact that other nodes may also
share part of the computations. The depth-first BBD
method does pre-computing for all the nodes under the
same branch. However, if the branch is discarded, the pre-
computing itself is a waste of computational resources.

In the high SNR regime, since the error performance of
the DF detector is characterized by the diagonal elements
of L, it is reasonable to make the following assumption in
the BBD search:

Assumption: If a branch on level k is accepted (not
discarded), then the sub-branches on levels k+1, . . . , k+m
may also be accepted with a high probability as long as
∀k < j ≤ k + m, ljj < lkk.

Based on this assumption, suppose for user k, uk and dk

are defined as

uk = arg min
0<i<k

(∀i ≤ j < k, ljj < lkk) (11)

or uk = k if no solution can be found in (11)
dk = arg max

k<i≤K
(∀k < j ≤ i, ljj ≤ lkk) (12)

or dk = k if no solution can be found in (12)

Similar to the simplified fast optimal algorithm, we also
keep a vector z . When computing the lower bound ξk, we
precompute for users k + 1, . . . , dk

∀k < j ≤ dk, [zk]j = [zk−1]j −
k∑

i=uk

bj lji (13)

i.e., precomputing involves only the block in L with rows
[k + 1, dk] and columns [uk, k].

D. Fast Optimal BBD Algorithm (Full Version)

Similar to the depth-first BBD, the user ordering is pre-
computed offline, and we assume that all matrices are
properly precomputed for the ordered system. In order
to implement the new search strategy, instead of using the
OPEN stack, in the full version, we have K queues, termed
q1, . . . , qK . Queue qk is associated with user k. The nodes
in a queue follow the “first-in-first-out” rule, i.e., nodes en-
ter from the tail and are taken from the head of the queue.
In addition, we order queues according to the values of the
diagonal elements of L, i.e., in the BBD search, we take
nodes from the queues in the order [qm1

, . . . , qmK
], where

m1, . . . , mK are defined in (10).

To implement the proposed method, for each user k, the
block margins uk and dk are precomputed and stored in
vectors u and d .

The full version of the fast optimal BBD algorithm pro-
ceeds as follows:

Fast Optimal BBD Algorithm:
1) Order users according to theorem 1 of [3], which is

also presented in Proposition 2; Compute y , H and
L matrices for the ordered system; precompute the
vectors u and d , the components of which are defined
by (11) and (12).

2) Precompute ỹ = L−Ty .
3) Initialize k = 0. z k = ỹ , ξk = 0, UPPER = +∞

and initialize K queues by ∀k, qk = NULL.
4) Set k = k + 1. For both nodes, let z k = z k−1,

ξk = ξk−1. Choose the node in level k such that
bk = sign ([zk]k). Set flag f = 1.

5) Compute [zk]k = [zk]k − bklkk.
6) Compute ξk = ξk + (Dk − ỹk)2 = ξk + (zk)2k.
7) If ξk ≥ UPPER and not all the queues are empty,

drop this node. Go to step 11).
8) If ξk < UPPER and k < K, do
8.1) If f = 1, for both nodes in level k,

8.1.1) If dk > k, precompute ∀k < j ≤ dk, [zk]j =
[zk]j −

∑k−1
i=uk

bilji

8.1.2) If dk = k, precompute j = k + 1, [zk]j =
[zk]j −

∑k−1
i=uk+1

bilji

8.1.3) Append the node bk = −sign ([zk]k) to the
tail of queue qmk

, and store the associated k, ξ
and z k together with this node.

8.2) If dk > k, precompute ∀k < j ≤ dk, [zk]j = [zk]j −
bkljk

8.3) If dk = k, precompute j = k + 1, [zk]j = [zk]j −
bkljk

8.4) Go to step 4).
9) If ξk < UPPER, k = K and not all the queues

are empty, update the “current-best” solution and
UPPER = ξk. Go to step 11).

10) If ξk < UPPER, k = K and all the queues
are empty, update the “current-best” solution and
UPPER = ξk; Go to step 12).

11) Pick one node from the queues (note that we should
check queues in the order of qm1

, . . . , qmK
). Set k, ξ

and z k equal to the stored values associated with this
node. Set f = 0, go to step 5).

12) Stop and report the “current-best” solution.

E. Non-Binary BBD

In a system where user signals are taken from a finite
alphabet, the fast optimal BBD algorithm can be applied
directly. In step 5), we should choose the node associated
with bk that minimizes |[zk]k − bklkk|. Step 8.1) should be
applied to the rest of the nodes, which should be sorted in
an ascending order according to the values of |[zk]k−bklkk|.

Alternatively, one could choose to treat an M -ary user
as several binary users (e.g. M = 8 equivalent to 3 bi-
nary users). Both philosophies are applicable to any BBD
method, including sphere decoding.

5

F. Upper Bound Initialization

The upper bound initialization in step 3) of the SD
method is the only place where the statistical information
is used. Beside the drawback of requiring σ, it is the key
step in SD that ensures the asymptotic average computa-
tional cost be polynomial [7].

Assume that the true solution b̄ is also maximum like-
lihood, the optimal cost is given by (7). Approximate
UPPER = ‖v‖2

2 by a Gaussian random variable, we have
‖v‖2

2 ∼ N(Kσ2, 2Kσ4). Therefore, when σ is available,
to further reduce the average computational cost, we rec-
ommend modifying steps 2), 3) and 12) in the fast BBD
algorithm as follows:

2) Precompute ỹ = L−Ty . Precompute C = Kσ2 +√
2Klm1m1σ.

3) Initialize k = 0. z k = ỹ , ξk = 0, UPPER = C and
initialize K queues by ∀k, qk = NULL.

12) If no solution is available so far, let C = C +√
2Klm1m1σ and go to step 3). Otherwise, stop and

report the “current-best” solution.
Although the effect in the high SNR regime is limited,

when SNR is moderate, the recommended upper bound
initialization saves up to 1

3 of the average computational
cost of the fast BBD algorithm (speed-up of 33%).

V. Simulation Results

Example 1: In this example, we vary the number of
users from 5 to 60. The ratio between the number of users
and the signature length is fixed at 5

6 . The binary sig-
nature sequences are randomly generated2, and the user
signal powers are set to be equal. For the suboptimal de-
tectors, the SNR is fixed at 14.77db. Upper bound initial-
ization is used by the fast BBD algorithm. A comparison
of the average computational costs of the fast optimal BBD
algorithm, the SD method, the decorrelator as well as the
decorrelating DF method at different SNRs are shown in
Figure 1. When SNR = w2

kk

σ2 = 14.77db, the average com-
putational cost of the fast BBD algorithm is comparable
to that of the decorrelator for up to 60 users, and is signif-
icantly better than that of the SD method with the same
SNR.

Example 2: In this example, we have 50 equal-powered
users. The 53-length binary signature sequences are ran-
domly generated. Figure 2 shows the average computa-
tional costs versus SNR, together with the 10th and the
90th percentile curves, for the fast BBD and the SD algo-
rithms. Upper bound initialization is used in the fast BBD
algorithm.

VI. Conclusion

A fast BBD-based optimal algorithm for the multiuser
detection of symbol synchronous CDMA is proposed. Due
to the use of statistical information embedded in the sys-
tem model, the average computational cost has been sig-
nificantly reduced. The fast BBD is found to outperform

2The signature sequence of each user is generated once and is fixed
throughout the Monte-Carlo runs.

Fig. 1. Average computational costs vs. number of users. (Random

signatures, Number of Users
Signature length

= 5
6
, 104 Monte-Carlo runs.)

Fig. 2. Average computational cost vs. SNR. (50 users, 53-length
random signatures, 104 Monte-Carlo runs.)

the SD for all SNRs and all numbers of users in the bin-
ray signaling case. Comparisons for the M-ary modulation
cases are in progress.

References

[1] S. Verdu, Multiuser Detection, Cambridge University Press, New
York, 1998.

[2] J. Luo, K. Pattipati and P. Willett, Optimal Grouping Algorithm
for a Group Decision Feedback Detector in Synchronous CDMA
Communications, to appear in IEEE Trans. Comm.

[3] M. K. Varanasi, Decision feedback multiuser detection: a system-
atic approach, IEEE Trans. Inform. Theory, Vol. 45, pp. 219-240,
Jan. 1999.

[4] D. Bertsekas, Network Optimization, Continuous and Discrete
Models, Athena Scientific, Belmont, Massachusetts, Chap. 10,
pp. 483-492, 1998.

[5] C. Schlegel and L. Wei, A simple way to compute the minimum
distance in multiuser CDMA systems, IEEE Trans. Comm., Vol.
45, pp. 532–535, May 1997.

[6] L. Brunel and J. Boutros, Lattice decoding for joint detection
in direct sequence CDMA systems, Accepted for publication in
IEEE Trans. Inform. Theory.

[7] B. Hassibi and H. Vikalo, On the Expected Complexity of Integer
Least-squares Problems, IEEE ICASSP, Orlando, FL, May 2002.

[8] J. Luo, K. Pattipati, P. Willett and G. Levchuk Fast Optimal and
Sub-optimal Any-Time Algorithms for CDMA Multiuser Detec-
tion Based on Branch and Bound, Submitted to IEEE Trans.
Comm., Aug. 2000.

