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Abstract

In this paper, two efficient pilot-aided iterative space-time interference cancel-
lation receivers are studied in order to increase the uplink capacity of Universal
Mobile Telecommunication System (UMTS) in Frequency Division Duplex (FDD)
mode. Both iterative schemes use low complexity beamforming and path combin-
ing techniques associated to soft-input soft-output (SISO) decoding to mitigate
the multiple access interference in space and time. The difference of the proposed
techniques rely on the way they deal with unknown channels: The addition of a
space-time channel estimation in each iteration on one hand and iterative adap-
tive beamforming and path combining on the other hand. Thanks to the iterative
structure, the observation signal used for estimation or adaptation contains less
interference from one iteration to the following and soft estimates of coded bits are
available for data-aided estimation or adaptation. A detailed complexity analysis

shows that renewing beamforming and path combining in each iteration without a
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priori knowledge on the channel has no significant impact of the overall complexity
of one iteration. Simulations of true UMTS-FDD uplink communications over a
wideband directional channel model reveal that near-single user performance can
be obtained for very high system loads, whereas more conventional receivers such
as the interference canceller without beamforming and the two-dimensional Rake

receiver fail in recovering the transmitted information.

Key Words: Beamforming, Multiuser Detection, Interference Cancellation,
Iterative Techniques, Channel Estimation, Adaptive Space-

Time Processing, W-CDMA, UMTS-FDD.

1 Introduction

The third generation (3G) of mobile cellular radio systems, i.e., the Universal Mobile
Telecommunication System (UMTS), will allow transmission data rates up to 2 Mbit/s
with an air interface based on Wideband Code Division Multiple Access (W-CDMA) [1].
In order to exploit the available paired and unpaired frequency bands of the spectral
resource, both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) are
considered to deal with uplink and downlink communications. However, the FDD mode
currently receives more attention from manufacturers as it should be used to launch
3G services.

To cope with the relatively low level of traffic and associated interference generated
by 3G first subscribers, simple demodulation techniques, such as Rake receivers [17], will
probably be employed in a first step. Subsequently, advanced receiver techniques will
have to be implemented to face the expected increase of traffic and interference. Several
interference mitigation techniques have been studied for W-CDMA Base Station (BS)
receivers, where additional computational complexity is tolerable [15]. Due to the large

size of spreading sequences available for UMTS-FDD (the spreading factor may be as



large as 256) and the existence of a scrambling code with length 22° — 1, multi-user detec-
tion techniques based on matrix inversion require too much computational complexity.
In contrast, techniques based on Interference Cancellation (IC) [22] seem appropriate to
mitigate intra-cell interference with a reasonable complexity increase. The interference on
a given user is rebuilt from a bank of Rake receivers and subtracted from the received sig-
nal in order to produce a new clearer observation for this user. This process may then be
iterated. Several studies, e.g., [3] [18], have shown that performance could be increased by
using channel coding and performing Soft-Input Soft-Output (SISO) decoding inside each
detection iteration. This allows a soft interference cancellation with additional reliability,
which reduces the error propagation phenomenon between successive iterations. Alterna-
tively or in conjunction, beamforming antenna arrays [12] may reduce this interference.
Recently, several studies have been carried out on the association of IC techniques and
antenna arrays for space-time IC [11]. An efficient scheme including beamforming in the
soft interference cancellation process has been proposed in [19] assuming perfect chan-
nel knowledge. In each iteration, a bank of user-specific space-time (2D) Rake receivers,
linearly combining signals from all paths and all antennas, allows additional interference
reduction, thus improving the iterative process. To further improve the performance, par-
tial interference cancellation with beamforming has been considered in [13], also in the
case of perfect channel knowledge. Actual space-time channel estimation was considered
for a comparable iterative space-time soft interference cancellation scheme, where the
bank of 2D-Rake receivers is replaced by a linear multi-user detector based on the mini-
mum mean square error (MMSE) criterion [21]. This approach, which requires a matrix
inversion with a size proportional to the spreading factor may lead to a non-tolerable
increase of computational complexity regarding the large spreading factors allowed in
UMTS-FDD systems.

This paper proposes and compares two different iterative pilot-aided space-time soft
interference cancellation techniques for unknown channels that are particularly suited to

W-CDMA uplink scenarios such as UMTS-FDD. The first approach integrates in the



structure proposed in [19] an explicit space-time channel estimation [5], which is renewed
in each iteration to make it benefit from the iterative process. The second approach
presents a modification of [19], where a bank of adaptive space-time combiners replaces
the bank of 2D-Rake receivers in each iteration. This leads to a complete adaptive iterative
space-time soft interference cancellation with no need of space-time channel estimation
[16] where, thanks to the iterative process, simple adaptive algorithms can be employed
with good convergence properties. Other advantages of our adaptive signal processing
technique are its capacity to track short-term space-time channel variations and the in-
sensitivity of the proposed adaptive beamforming to phase array calibration mismatches.
Alternatively, iterative space-time interference cancellation with explicit channel estima-
tion is likely to allow an easier implementation by avoiding engineering problems such as
the step size optimization according to the transmission conditions.

Both proposed solutions aim at finding the good trade-off between complexity and
performance, by including in the iterative process a maximal number of signal processing
modules that are required by the receiver, to further improve the detection performance,
while keeping the complexity of these modules as low as possible. These studies have
been realized in the scope of the IST-1999-10741 ASILUM (Advanced Signal Processing
Schemes for Link Capacity Increase in UMTS) project [2], sponsored by the European
Commission under the Information Society Technologies (IST) Program. A preliminary
evaluation of these techniques has already been presented in parts ([4], [16] and [5]) for
conventional uplink W-CDMA scenarios. In this paper, we propose an exhaustive compar-
ative survey of the proposed adaptive and non-adaptive iterative space-time soft interfer-
ence cancellation techniques and we detail how both techniques can be optimized in a true
UMTS-FDD transmission matching 3GPP standard, which implies frame structures with
specific data and pilot repartition. For such a system, we show that iterative space-time
soft interference cancellation really increases the uplink capacity of UMTS-FDD systems
compared with conventional Rake receivers, even when the space and time characteristics

of the channel are unknown. Additionally, we propose a complexity analysis and eval-



uate the cost of renewing either space-time channel estimation or adaptive space-time
signal processing in every iteration. As far as the capacity increase due to multiple anten-
nas of UMTS-FDD uplink systems is considered, the validity of the space-time channel
model used for simulations is of paramount influence for reliable performance evaluation.
Therefore, simulations are carried out by using a wideband directional channel model
(6] for macro-cellular UMTS environment, which has been validated by measurements.
Simulation results show that both schemes are capable to handle very high system loads
and to achieve near single-user performance with low pilot power overhead according to
the standard. The two iterative approaches experience different behaviors: The adaptive
scheme is especially effective in the first iterations whereas the efficiency of the channel
estimation-based scheme comparatively increases with the number of iterations.

The remainder of this paper is organized as follows: Section 2 presents the considered
UMTS-FDD reference system with detailed description of the transmitter, the wideband
directional channel and a conventional 2D-Rake receiver. The FDD frame structure is
briefly introduced to describe the different pilot and data configurations that are avail-
able in dedicated UMTS-FDD scenarios. Iterative space-time soft interference cancellation
is considered in section 3 with a detailed description of the two pilot-aided alternative
solutions. Section 4 proposes an evaluation of both receivers’ complexity. A performance
analysis is presented in section 5 for true UMTS-FDD scenarios allowing a precise eval-
uation of the capacity increase thanks to the proposed algorithms. The paper is finally

concluded in section 6.

2 Reference System Description

2.1 Transmitter

Let us consider the uplink of a UMTS system in FDD mode [1] with K transmitters, the

baseband processing units of which are depicted on Fig. 1.



M transport blocks of A information bits are sent for each user & during a Transmission
Time Interval of TTT ms. They form the Dedicated Physical Data Channel (DPDCH) of
user k. L, parity check bits are added to each transport block before segmentation into C'
code blocks. Each code block is encoded by either a convolutional code (with rate 1/2 or
1/3) or a turbo code with rate 1/3. The channel encoding output is a block of N, coded bits
ce(1),7=0,...,N.— 1. This coded block is then processed by a user-specific I1j function,
including a radio frame equalization, a first interleaving, a radio frame segmentation, a
rate matching and F' = TTI/10 second interleavings with size N,/F. By adding some
padding bits, the radio frame equalization ensures that the block of duration 71 ms can
be divided into F' frames of 10 ms. The first interleaving changes the position of all N,
bits before their segmentation into TTI/10 frames. The rate matching, performing either
puncturing or padding, modifies the block size into NC/F in order that coded bits can
be transmitted over 10 ms frames with the available spreading factors SF' = 4, 8, 16, 32,
64, 128 or 256. The II; function outputs a block of N, interleaved coded bits i (7). These
data bits are spread by a factor SF' into 38400 x F' chips with duration 260 ns. Each
frame of 38400 chips is segmented into 15 timeslots of 2560 chips.

Besides, for each user k, a Dedicated Physical Control Channel (DPCCH) contains in
each timeslot 10 control bits spread by a factor 256. Among them, Ny bits are pilot
bits. Thus, to each data block with size Nc, correspond N, = F' X 15 X Npijos pilot bits
pr(i). The timeslot structure is detailed on Fig. 2.

Data bits from DPDCH are modulated in phase with amplitude (34, whereas control
bits from DPCCH are modulated in quadrature with amplitude (.. After user-specific
scrambling, the complex sample si(n) of user k£ at time n is transmitted on the mobile

radio channel.



2.2 Wideband Directional Channel

As we intend to apply beamforming at the BS side to increase the performance of UMTS-
FDD uplink systems, a space-time channel model which is representative of an actual
2 GHz transmission is needed to get an accurate estimate of the interference mitiga-
tion capability of our system. Therefore, we use a Wideband Directional Channel Model
(WDCM) [6] that yields a realistic distribution of path Directions of Arrival (DOAs) and
delays.

The WDCM, proposed in the IST project ASILUM [14] for micro- and macro-cells,
results from a geometrically based single bounce statistical modeling. In this paper, we
focus on macro-cells. In this case, clusters of scatterers are uniformely distributed in a
circle, the center of which is the Mobile Station (MS). Scatterers have a Gaussian distri-
bution around the cluster’s central point and the number of scatterers per cluster follows
a Poisson distribution. A complex coefficient, describing the random attenuation and the
phase rotation affecting the signal after reflection, is assigned to each scatterer. The model
only takes into account the signals from BS to MS experiencing a single reflection. Rough
surface scattering, diffraction and multiple reflections are not considered. The amplitude
of each signal between MS and BS is computed from the path loss and scatterer’s random
attenuation. The output of the model is a matrix of complex coefficients associated to
different delays and DOAs. The model was assessed by channel measurements [24][14].

The obtained channel for each user k contains P] paths, each path p having a delay
equal to 7, chips, a complex Gaussian coefficient at time n hy,(n) with amplitude
prp(n) and phase v;,(n), and a DOA 6y ,(n). Several paths may have the same delay
but different DOAs. We denote P} the number of distinct delays 73 ,. In the sequel, the
channel is assumed stationary over one entire frame in order to simplify the notations

but the description can of course be adapted to shorter stationarity periods.



2.3 Two-Dimensional Rake Receiver

Let us now consider the conventional receiver baseband processing unit for the described
system. Fig. 3 depicts a space-time combiner (2D-Rake receiver) using a Uniform Linear
Array (ULA) with L antennas. Assuming plan wave propagation, the ULA geometry
induces a constant additional propagation length from one antenna to the next, equal to
dcos(fk ), where d is the distance between antennas. Thus, for DOA 6y, the space-time

channel coefficient resulting from the specific phase rotation ¢y, on antenna ¢ is

hieep = Prp exp (5k.ep) (1)

where
Ektp = Vkp+ Okup=Vkp+ (0 —1).0pp

d
= Vpp+ QWX(E — 1) cos(Bgp)- (2)

Ais the carrier wavelength and ¢y, is the constant phase rotation between two consecutive
antennas. Assuming rectangular pulses and chip-rate sampling at the receiver side, the

received sample on each antenna /¢ at time n is

K Py

Fo(n) =Y hiey sk(n — Tip) + we(n) (3)

k=1p=1
where wy(n) is the Additive White Gaussian Noise (AWGN) on antenna ¢ at time n. For
each user k£ and each path p among the P, paths with distinct delays, the observation

signal on antenna ¢ is handled by two descramblers/despreaders, one for DPDCH and

one for DPCCH, each matched to the path delay 7;,. We obtain from DPDCH complex

observations x%ag;(z) for i = 0,..., N, — 1, corresponding to the data coded bits ¢(i),
and from DPCCH, complex observations lei,();(z) for i = 0,...,N, — 1, corresponding

to the pilot bits py (7). For clarity reasons in the following developments, we use a time-

multiplexing between data and pilot observations. We obtain the following Np = N, + N,

observations:
Thep(i) = ahpp (i) for i=0,...,N,—1
Thop(i) = zpia(i — Np) for i=N,,...,Np—1 (4)



corresponding to transmitted bits:

Dk(Z):ék(Z—Np) for i:Np,...,ND—l. (5)

Thanks to the despreading, the observations mainly contain the contribution of a single
path. To cancel residual signals in non-desired directions, a beamforming combines signals
from the L different antennas. For each antenna ¢, a single coefficient 3y, is applied since

the despread samples are narrow-banded:

L
Urp(1) = Y Brp Troep(d)- (6)
/=1

Conventional beamforming [12], steering a beam in the direction of the strongest signal,
is applied here, i.e., Bxop = exp(—J Pr.ep)-
Observations for all paths of user £ are then combined using coefficients a1, ..., a p,

to provide us with a single observation zj(i) for each transmitted bit:

2(i) = 2 i e (i) ™)

Maximum Ratio Combining (MRC) is performed here, i.e., ax, = prpexp(—J Vk,p)-
For each user k, the observations on coded bits are processed by H,;l, the inverse
of the global framing function II; and decoded. Frame error is then tested by using the

parity check code.

3 Iterative Space-Time Interference Cancellation

Fig. 4 depicts an iterative space-time interference cancellation receiver with .J iterations
using a ULA and a SISO decoder, as described in [19], where perfect space-time channel
estimation is assumed. In each receiver iteration j, a user-specific multi-antenna obser-
vation signal F,(CJZ(n), where ¢ = 1,..., L, provided by the previous iteration 7 — 1, is

processed by a space-time combiner as represented on Fig. 3. Note that superscript (j)
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is now added to all notations in the sequel. In the first iteration, the observation signal

is equal for all users to the received signal:
#On) = e(n) Yk =1,..., K. "

For each user k, the observations on coded bits are processed by H,;l, and decoded by
a SISO decoder, e.g., a forward-backward decoder, that yields soft estimates 5,(3)(@') on
coded bits. This stage concludes the detection process of each iteration. Then, the soft
estimates are processed by function II,. A space-time respreader performs spreading of
the Il output signal, modulation with reinsertion of DPCCH in the quadrature com-
ponent, amplitude weighting with coefficients 3; and f3., scrambling and filtering by the
space-time channel impulse response to rebuild each users’ contribution in the global
interference on each antenna. From these soft contributions, interference cancellation is
performed on the received signal to supply the following iteration with a new cleared
user-specific observation signal f,(cjjl)(n) Using coded bit estimates after SISO decoding
strongly improves the interference cancellation quality, allowing high capacity and near-
single-user performance. Note that the last iteration of Fig. 4 only consists in a final

detection process without interference cancellation.

3.1 Iterative Space-Time Interference Cancellation with Chan-

nel Estimation

As channels are unknown and pilots are available in the UMTS-FDD system, we first pro-
pose to include a pilot-aided space-time channel estimation in each space-time combiner,
i.e., in each iteration. Since the quality of the observation signal f,(f)(n) improves from one
iteration to the following, the estimation accuracy will also improve, thus making the de-
tection less erroneous. Hence, we expect a performance improvement in comparison with
a non-iterative estimation, which would be performed in the first iteration only. Further-

more, since the reliability of coded bit estimates is increased thanks to SISO decoding,

the soft values 6,(; )(z) of data bits may be used as new pilots in the following iteration for
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data-aided estimation. This larger number of pilots for iterations 1 to J — 1 will further
improve the estimation quality and thus the performance.
As done for observations in (4), the N, soft estimates on coded bits 6,(;)(2') are time-

multiplexed with the pilot bits:

AP (i) = pr(i) for i=0,...,N, —1
AD () = 69 (i — N) for i=N,,...,Np—1. (9)

The space-time channel estimation individually computes the complex coefficient and
the DOA for each path p of user %, i.e., it works with signals x,(j,)_,p(z) for ¢ =1,...,L
and i = 0,...,NU) — 1. In iteration 0, the estimation is performed just using pilot
symbols (N(® = N,) whereas coded bit estimates are available to improve estimation in
iterations 1,...,J — 1 (NU) = Np). Two space-time channel estimation algorithms were
considered in [5]: A root-MUSIC algorithm with spatial smoothing and a low-complexity
estimator based on an approximation of the Maximum Likelihood (ML) criterion, with the
restrictive assumption that paths from different DOAs arrive with different delays. Since
the former is quite complex and as we aim at performing estimation in each iteration,
we focus in this paper on the latter algorithm to limit the receiver complexity. From
(3), assuming that the interference from other users and other paths has been perfectly

cancelled, we can write the despread signal as
20 (0) = hey Di() +whp (i) (10)

where wj, , (i) is the noise sample on symbol 7 for antenna £, user k and path p. For a given
user and a given path, all noise samples wj , (i), V/=1,...,L,Vi=0,..., NU) —1, are
Gaussian and independent. To perform ML estimation of space-time channel parameters
Pkps Vip and O ,, we must minimize the quadratic Euclidean distance d,(c] 1),2 between the
received sequence and the expected one:
NG -1 L
4 = S S lailh, (i) — e A0 (1)

1=0 (=1
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Note that for iteration 0, A,(fl)(i) is only composed of pilots since soft estimates 6,(;1)(2')
are not available. To simplify the minimization, we perform it separately on each antenna

to find at iteration j the estimate f,(fgp of the phase rotation & 4, defined in (2):

1=0

NG) =1
. . . ) . )2
Gty = argmgn( > | a0 —p Ay w)
. H /-
= arg (Agl) X](cj’%’p> € (—m; 7] (12)

where arg(a) is the argument of the complex number a and A” and A" denote the trans-

pose and the transpose-conjugate of A, respectively. Thus, the estimate is the argument

. . . ] T
of the correlation of the observation sequence xg}’p = (xé{%’p(()), e ,x,(c]’,)_,’p(N(J) — 1)) and

the pilot sequence A" = (A,(Cj_l)(()), L AUTD(NG) - 1))T.

Since the antenna array is a ULA, according to (2), the phase rotation &y, for
¢ =1,...,L, is an affine function of the antenna index /. However, the estimate é,(c{,z,’p
belongs to (—m;7]. Therefore, a phase unwrapping is necessary, which suppresses the

effect of the modulo-27 operation. The L obtained phases are corrupted by noise, which

is mitigated by a linear regression. This yields the estimates HA,(CJI), and ﬁ,(cjl),

()

Finally, py

42
is obtained by minimization of dg’; :

. £(7) . VH .
L Shr{ed Heap™ g, )
pk,p =

. (13)

NN

where E,E{Q,p = 17/2{;); + 274 (€ — 1) cos é,(cj; and R{a} is the real part of a. Right hand side
of (13) is the real part of the correlation between the observation sequence and the pilot
sequence, after phase correction, averaged over all antennas and normalized by the energy
of the pilot sequence. The obtained channel estimates are then employed in the space-time

combiner including conventional, i.e., MRC, beamforming and path combining.
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3.2 Adaptive and Iterative Space-Time Interference Cancella-
tion

As an alternative to the inclusion of explicit space-time channel estimation in each it-
eration proposed in section 3.1, we propose here an adaptive space-time signal process-
ing technique to cope with unknown channels with no need of explicit channel estima-
tion. However, in the iterative space-time interference cancellation receiver represented
on Fig. 4, both the space-time combiner and the space-time respreader require some
knowledge about space-time channel characteristics. Thus, avoiding space-time channel
estimation, thanks to adaptive signal processing, impacts both the combining and the

respreading techniques.

3.2.1 Adaptive Space-Time Combining

We include in each iteration an adaptive MMSE space-time combiner. Compared with
a conventional beamformer, an adaptive MMSE beamformer is able to cancel interfering
signals by placing nulls of the antenna diagram in their directions, while pointing its main
lobe towards the direction of the desired signal. Furthermore, by contrast with beamform-
ing based on explicit DOA estimation algorithms, adaptive MMSE beamforming can form
several lobes towards the different DOAs of an observation signal without any a priori
knowledge of the number of DOAs. To ensure a good trade-off between performance and
complexity, we choose the Normalized-Least Mean Square (N-LMS) adaptive algorithm
[9]. Both disjoint and joint structures have been investigated to perform combining in
space and time [23]. We focus on a disjoint adaptive structure, i.e., an adaptive N-LMS
beamforming filter followed by an adaptive N-LMS path combining filter. Indeed, dealing
with two short filters instead of one larger filter in the joint approach is expected to in-
crease the convergence speed while not inducing too much performance degradation due
to the suboptimality of a disjoint process. This results in an adaptive MMSE space-time

combining structure represented on Fig. 5, that is related to the conventional structure
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depicted on Fig. 3.
After despreading for user & of each path p on each antenna ¢, the beamformer outputs

for each path:

y)(i) = BT X 0) =Y B0, 60) =),() (14)

) - N hoonT w N N AT
where x;(fp) (i) = (x,(fip(z), . ,x,(g’)L’p(z)) and 51(3,,),(2) = (ﬁ,(j’%’p(z), N ﬁ,gf%’p(z)) results
from the N-LMS update rule as follows:

B (i +1) = BY) () + ud) (i) e (i) <) (3). (15)

eg;(z) is the error signal controlling the convergence of the algorithm and ug;(z) is the step
size of the N-LMS algorithm [9]. Initialization of vector 51(2;);(0) ensures an omnidirectional
beamforming, i.e., B,(SI),(O) = (L,0,0,...,0). A classical way [20] to generate the error
signal eg;(z) consists in subtracting, prior to path combining, the observation signal, i.e.,
the beamforming output, from the expected signal, i.e., a pilot weighted by the channel

coefficient:

. (1 A(1 —1 . y .
e i) = p) exp(og)) AYTV () -y (). (16)

Indeed, degradations caused by the multipath channel have not been corrected at this
stage of detection process. However, applying (16) would require explicit knowledge of the

() ()

complex channel attenuation gy, exp(j ﬁk"p), we prefer the following error signal definition

avoiding channel estimation:

el (i) = APV (@) -y (). (17)

P

Since using (17) forces the beamformer to compensate for the channel phase rotation vy,
this filtering process may be considered as a rotated beamforming.
Then, observations for all paths of user k£ are combined to provide us with a single

observation z,(cj )(z) for each transmitted symbol Dy (i):

(”) () ()T ) S= ) 1y o)

. . ! . . .

27 (0) = o () Ty, " (i) = > Ozkj’p(l) yk{p(z) (18)
p=1

14



. . . T .
where yi9) (i) = (y,(f%(z), . ,y,(ﬂak (z)) and the combining coefficient vector o) (i) =
. . T
(a,(ﬁ(i), ce a,(f}gk (7)) is generated from another N-LMS update rule as follows:
ol (i +1) = () + 7 (0) €7 0) ¥ ) (19

where e;e(j )(z) is the error signal controlling the convergence and /L;C(j )(z) is the step size

of the N-LMS algorithm. Initialization of vector a,(f)(o) ensures an equal gain path-

combining, i.e., a,(co)(()) = (1,1,...,1) . The error signal e;c(j)(i) is generated as:
e () = A7 V() - 2700, (20)

As for our proposed technique based on explicit space-time channel estimation, adaptive
algorithms at the first iteration are only processed based on N, observation signals.

Using the same reference signal in (17) and (20) avoids estimating the channel and
enables to jointly optimize the space and time combining filters. Particularly when the
structure has converged, the beamforming fully compensates for the channel phase rota-
tion and the path combining only weights each path with a distinct real-valued coefficient.
Furthermore, in case of phase array calibration mismatches that may appear during the
transmission, our algorithm will also compensate for the corresponding additional phase
rotation, which avoids the additional complexity of specific antenna calibration devices.

Besides, channel decoding induces a block-by-block processing of received signals and
we assume channel stationarity over one block, e.g., one timeslot or one frame. Thus,
at the end of the processing of a given block at iteration j, vectors a,(cj)(N(j) — 1) and
B,(C];I),(N(j) —1) are assumed to be closer to the MMSE optimum vectors than the preceding
ones. Hence, both final sets of coefficients are re-used to process the same block again, so
that the output samples z,(cj )(z) can be generated with additional reliability.

Repeating adaptive space-time combining in each iteration is beneficial for several
reasons. On one hand, the reference signal A,gj_l)(i) can be either a pilot symbol or a

self-estimate, which becomes more reliable with the number of iterations. On the other

hand, the initialization of adaptive filters for one block at iteration j (j # 0) is based
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on the filter coefficients obtained after the processing of the same block at iteration
j — 1, since these coefficients are expected to be all the closer to the optimum MMSE
coefficients as the number of iterations increases. In this way, interference cancellation at

iteration j is expected to output a new set of observations f,g;l)(n) that are decorrelated

from observations f,(f}(n), at least for the very first iterations, in which the amount of
interference is high. The convergence process of the adaptive algorithms can then go on
from one iteration to the following one with a lower residual mean square error (MSE).

In other words, the iterative process enables to use simple adaptive algorithms, whose

low convergence properties are improved thanks to the number of iterations.

3.2.2 Space-Time Respreading

As depicted on Fig. 4, for each iteration, the interference contribution of each user must
be regenerated at each antenna connector in order to subtract the space-time interference
from the received signal. Thus, the signal estimate A,(cj )(z) of each user must be respread
by the associated spreading sequence and filtered by a model of the space-time channel,
as represented on Fig. 6.

In order to avoid any explicit estimation of the space-time channel, the interference
regeneration process simply uses coefficients issued from the adaptive space-time combin-
ing filters. However, since the reference signal is common to both adaptive algorithms,
vectors ,3,(52)(@) and a,gj )(z) do not explicitly contain the separated influence of the multi-
path channel and DOAs. Therefore, we model the space-time channel in two parts: A path
signal regenerator and an antenna signal regenerator. The vector of P, coefficients ’y,(j )(z)
used to perform path signal regeneration is derived from the vector of P coefficients

a,(cj)(i) issued from the path-combining filter as:

v (i) = ol (i). (21)

Similarly, the vector of L coefficients C,(cjz),(z) for antenna signal generation relies on

vector Bg;(z) obtained by the adaptive beamformer. The elements C,gjl?p(z) of vector 455;(2)

16



are defined as: "

) o Brep(d)
Clg],lz,p(l) = (;)m - (22)

|5k,z,p(l)|
This regeneration process, described by (21) and (22), assumes that the adaptive MMSE
space-time combining structure converges to a space-time matched filter as the number of
iterations increases. If interference cancellation performs successfully and additive noise
is omnidirectional, this condition is valid for an observation signal coming from a single
DOA, since MRC and MMSE beamformers have the same antenna diagram. For an

observation signal issued from multiple DOAs, this approximation may lead to slight

degradations.

4 Complexity evaluation

In this section, the complexity of the proposed iterative receivers is quantified in terms
of computational complexity and storage requirements for different UMTS-FDD scenar-
ios [1]: 8 kbps, 64 kbps, 144 kbps and 384 kbps. Note that the 144 kbps scenario, which
has been chosen to present performance results, is detailed in the next section.

Algorithms are analyzed based on their respective software implementations for one
iteration of the iterative process. The complexity of several iterations may be exactly
proportional to the number of iterations or slightly reduced depending on the parallel or
cascaded implementation of the whole iterative process. As the processing of the received
signal is performed on a slot-by-slot basis, the computational complexity is evaluated for
all the functions involved for the detection of one timeslot while the storage requirements
depend on the activation rate of these functions (each bit, each slot or each coded block).
Besides, all these functions except the interference cancellation block are user-specific.
Therefore, results of complexity are presented in the sequel for the detection of one user.
Finally, to properly evaluate the impact of multiple antennas on the complexity increase,
figures are given as a function of the number of antennas.

In the sequel, for clarity reasons, we will refer to the iterative space-time interference
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cancellation using explicit space-time channel estimation as the "non-adaptive” scheme
while iterative space-time interference cancellation using adaptive space-time signal pro-
cessing will be referred to as the "adaptive” scheme. The 2D-Rake receiver with perfect

channel estimation (”2D-Rake”) will also be considered as a reference.

4.1 Computational complexity

When evaluating the computational complexity, only operations strictly related to the
data processing are considered. In other words, operations required for indexing, loop
counters, assignments of values to variables, and so on, are not taken into account. Fo-
cusing on a fixed point DSP implementation, computational complexity is evaluated in
terms of MACs (Multiplications-ACcumulations). Complex additions are approximated
to 1 MAC whereas complex multiplications require 4 MACs. Other data processing oper-
ations such as division or square root are all estimated at 10 MACs, assuming an iterative
implementation.

Table 1 compares for one iteration the computational complexity of the adaptive (resp.
non-adaptive) receiver Cagaptive (IeSpP. Chon-adaptive) t0 the complexity Cop rake of the 2D-
Rake receiver. Decoding is performed by a Viterbi algorithm in the reference 2D-Rake.
Then, we can derive the complexity for .J iterations (ng;ptive and Cf;o’fl_adapﬁve) of the

proposed techniques as :

Cégi)lptive = (J - 1) C’adaptive + C2D—Rake (23)
C’r(;o]r)l-adaptive = ('] - 1) Cnon—adaptive + Cop-Rake- (24)

These complexity figures include the complexity of the interference cancellation process.
Both proposed iterative receivers induce the same level of complexity whatever the num-
ber of antennas and the scenario. In other words, the complexity of our explicit space-time
channel estimation is equivalent to the complexity of our adaptive space-time signal pro-
cessing technique. For the 144 kbps scenario in the single antenna case, the reference

receiver has a complexity of 1.4 MegaMAC per user per timeslot. For the same scenario
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and J = 3 iterations, both proposed receivers induce a complexity of 12 MegaMAC, which
is 8.6 times larger. With 4 antennas, the reference receiver has a complexity of 1.8 Mega-
MAC whereas iterative receivers require 13.6 MegaMAC, which is only 1.1 times the
complexity of iterative receivers with a single antenna. Thus, increasing the number of
antennas does not impact too much the computational complexity of our systems.

Fig. 7 represents the complexity ratio of the different modules involved in one iteration
of space-time interference cancellation for the 144 kbps scenario with 4 antennas. SISO
decoding represents 89 % of the overall iteration complexity whereas space-time com-
bining at the chip rate for unknown channels only requires 7 %. In other words, dealing
with unknown space-time channels in each iteration by using either explicit space-time
channel estimation or adaptive space-time signal processing is reasonable since it does

not greatly impact the overall complexity.

4.2 Storage requirements

When evaluating the storage requirements, we enumerate the number of complex values
that must be memorized during the activation of each function involved in one iteration.
On that basis, it becomes easy to derive the required amount of bytes depending on the
implementation choice (float, double, quantized values...).

The storage requirements of the adaptive technique differ in principle from those of
the non-adaptive technique. The former consists in the storage of P, beamforming vectors
B,(C];I), of size L and a single combining vector a,(ej) of size Py in order to initialize adaptive
algorithms, whereas the latter needs storage of the P, DOAs 5,5{}, and complex signal

()

hp €XP(jVk,p). The storage requirements due to interleaving, deinterleaving,

attenuations p
channel decoding and interference cancellation processes are the same for both techniques.
Table 2 compares the storage requirements of the adaptive (resp. non-adaptive) re-

ceiver Sydaptive (Y€SP. Shon-adaptive) fOr one iteration to the storage requirements Sop Rake

of the 2D-Rake receiver. Thus, we can derive the storage requirements for .J iterations
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(S(‘]) and S ) of the proposed techniques as:

adaptive non-adaptive
Sﬁiptive = (J — 1) Sadaptive + S1c + S2p-Rake (25)
Sr(lir)l-adaptive = (J —1) Shon-adaptive + S1c + S2p-Rake (26)

where the term Sy results from the storage of initial chip observations needed for the
interference cancellation process on the different antennas.

We observe that the difference of storage requirements of the two proposed techniques
is negligible with respect to the memory needed by the SISO decoding. Similarly, using a
different number of antennas only slightly impacts the total memory requirement. Finally,
for the 144 kbps scenario with 4 antennas and 3 detection iterations, the total storage

requirement is approximately 7 times the storage needed by the reference 2D-Rake.

5 Simulation Results

In the simulated scenarios, users transmit 144 kbps data in the uplink of the UMTS
system in FDD mode. A block (M = 1) of A = 2880 information bits is transmitted over
F = 2 frames of 10 ms. L, = 16 parity check bits are added before division into C' = 6
blocks for rate 1/3 (557,663,711) convolutional encoding. The N, = 8838 coded bits are
processed by the IIj, function to provide N, = 9600 bits, which, after spreading in the
in-phase signal by a factor SF' = 8, are transmitted in 2 frames of 38400 chips. In each
timeslot, Npiey = 6 pilots among the 10 control bits are spread on the quadrature signal
by a factor 256, i.e., N, = 180.

Simulation results are given in terms of Bit-Error-Rate (BER) curves as a function
of the signal-to-noise ratio Ej,/Ny, where Ej, denotes the energy per bit and Ny the noise
spectral density. The 10log;; L dB gain due to multiple antennas justifies the very low
Ey/Ny values. The BER is averaged over all users, who have same power. The 2D-Rake
receiver with perfect channel estimation will be considered as a performance reference. In

all presented results, the ULA has 4 antennas. DOAs are randomly chosen in a 120 de-
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gree sector. For each MT, the WDCM is stationary over 3 timeslots, which results from a
mobile velocity around 60 km/h. Both proposed techniques dealing with unknown chan-
nels have been presented for a stationarity period equal to one entire frame. They were

adapted to a 3 timeslot stationarity period to produce the following results.

5.1 Optimization of pilot energy allocation

According to the UMTS-FDD standard, the power allocated to DPDCH and DPCCH can
vary depending on the specified values (. and ;. Fig. 8 represents the BER as a function
of E, /Ny for transmissions with two different DPCCH energies: In Case 1, 8, = ; and in
Case 2, 3. = 0.234. The non-adaptive iterative detection scheme is applied. As a reference,
we also plotted the performance of the 2D-Rake receiver with perfect channel estimation
for both allocation cases.

For single-user transmissions, when in-phase (DPDCH) and quadrature (DPCCH)
signals have the same amplitude (Case 1), thanks to the high pilot energy as compared to
the data energy, the space-time channel estimation is very accurate and 2 iterations are
enough to achieve convergence, with a loss of 2 dB as compared to 2D-Rake with perfect
estimation. However, the latter performance is quite bad because of the high energy
overhead from DPCCH, that dramatically impacts the total transmit power. To really
measure the performance improvement brought by our iterative receiver, we simulate
a more critical scenario, in which the DPCCH amplitude equals 3/15 of the DPDCH
amplitude (Case 2): The power difference between DPDCH and DPCCH equals —14 dB.
Since the energy overhead from DPCCH is smaller, the 2D-Rake performance results are
improved. Because of the low pilot energy, the first space-time channel estimates provided
by our receiver are not sufficiently accurate anymore and a considerable performance loss
is observed for iteration 0. This performance loss with respect to the performance of 2D-
Rake with perfect estimation is reduced to 2 dB in iteration 4, when channel estimation

is performed in each iteration. Due to the difference in DPCCH overhead, we obtain with
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our technique a 3 dB gain in Case 2 as compared to Case 1. As this relative behavior
is expected to be the same for a higher number of users, we will consider a DPCCH

amplitude equal to 3/15 of the DPDCH amplitude in the sequel.

5.2 Influence of the number of iterations

As far as iterative processes are considered, the expected gain in performance provided
by each additional iteration must be evaluated to find the good trade-off between perfor-
mance and complexity. For that purpose, since we aim at dealing with very high system
loads, we consider the transmission of 16 users, each following the 144 kbps scenario.
Fig. 9 and 10 show the BER averaged over all users versus E,/N, for different num-
ber of iterations of the non-adaptive scheme and the adaptive scheme respectively. Both
methods are compared to the single-user performance with perfect estimation and the
single-user performance when the scheme of interest is applied to cope with the unknown
channel.

First, both non-adaptive and adaptive schemes achieve near single-user performance
and experience the same general behavior: With the number of iterations, performance
increases while the gain provided by each new iteration decreases.

Going into detail, we note that the two proposed techniques exhibit some performance
differences. For iteration 4, the non-adaptive scheme only experiences a 1 dB loss (resp.
2.5 dB) with respect to single-user performance with imperfect estimation (resp. perfect
estimation) at a BER equal to 1073. Although the first iteration has promising perfor-
mance, the adaptive scheme has a stronger loss equal to 3.5 dB for both known and
unknown channels, which results from a lack of gain between iterations 2 and 4. Indeed,
for the very last iterations, correlation between observations increases, since the residual
interference is likely to decrease. Thus, the adaptive MMSE process deals with observa-
tions that are strongly correlated with observations provided at the preceding iterations,

which reduces the expectable MSE gain from one iteration to the following.
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Comparing both techniques on Fig. 11, we see that the adaptive scheme outperforms
the non-adaptive scheme for small E},/Ny values. Whereas the non-adaptive scheme out-
performs the adaptive one for 16 users and low BERs, the opposite behavior is noticed
for a single user. Thus, the adaptive scheme is strongly impacted by the multiple access
interference. This result contrasts with our expectations based on the two different space-
time combining properties: Our 2D-Rake with true channel estimation only copes with
the channel of the desired user whereas our adaptive MMSE space-time combiner should
have improved the interference mitigation by pointing nulls of the antenna diagram to-
wards undesired directions. In the latter scheme, two reasons can justify this unexpected
performance: The convergence of the disjoint adaptive structure based on the N-LMS
adaptive algorithm and the assumptions leading to the proposed respreading technique.
However, the proposed respreading technique is validated through the performance of
the single-user transmission, which shows that adaptive MMSE space-time combining
effectively converges to space-time matched filtering. Therefore, reasons of the behavior
with multiple users must be found in the low convergence performance of the N-LMS
algorithm.

Fig. 11 also represents the performance of other reception techniques: A 2D-Rake
with perfect estimation, the non-adaptive scheme using a single antenna with channel
estimation performed in every iteration and the non-adaptive scheme using 4 antennas
with channel estimation only performed at the first iteration. The 2D-Rake receiver,
even with perfect channel knowledge, has very poor performance with an error floor near
10~*. Performance of the non-adaptive scheme using a single antenna are even worst.
These results show the advantage of using iterative interference mitigation techniques
with antenna arrays. Finally, performance of iterative detection where space-time channel
estimation is only performed at the first iteration exhibits a loss of 3.5 dB at a BER equal
to 1072 comparing with an iterative process including estimation in each iteration. This
confirms the necessity to estimate the unknown channel in every iteration as proposed in

this paper.
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6 Conclusions

In this paper, we proposed and compared interference mitigation techniques that are par-
ticularly adapted to increase the capacity of UMTS-FDD uplink systems. Our iterative
schemes, including interference cancellation, beamforming and SISO decoding exhibit
near single-user performance for very high system loads, even when space and time char-
acteritics of the channels are unknown. This excellent performance is obtained thanks to
the iterative structure of our receivers. We also compared performance of both schemes
to more conventional reception techniques such as the 2D-Rake receiver and the iterative
receiver with a single antenna, which showed the necessity to envisage advanced detec-
tion schemes using antenna arrays in order to cope with highly interfered UMTS-FDD
systems. We finally showed that considering the channel as unknown and using several
antennas for beamforming in each iteration does not have significant impact on the overall

complexity of one iteration.
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8 kpbs

64 kbps

144 kbps

384 kbps

C(2D—Rake

8.6e4 4 1.2e5 L

5.7ed +1.2e5 L

1.3e6 + 1.2e5 L

3.4e6 + 1.2e5 L

C’non—adaptive

4.1eb+1.7ed L

2.3e6 +1.8e5 L

5.1e6 + 2eb L

1.3e7 4+ 2.4eb L

C(adaptive

4.0e5 4 1.3ed L

2.3e6 + 1.4ed5 L

5.1e6 + 1.5e5 L

1.4e7 4+ 1.7e5 L

Table 1: Complexity per user, per iteration and per timeslot for different data rates (L

antennas).
8 kpbs 64 kbps 144 kbps 384 kbps
S9D-Rake 1.23e3 16e3 35.7e3 94.7e3
Shon-adaptive 65.8e3 84.3e3 109e3 183e3

66e3 + 0.2e3 L | 86e3 4+ 1.5e3 L | 111e3 4+ 2.9e3 L | 188e3 4 5.8e3 L

Sa.da.ptive

SIC’

2.56e3 L/K | 5.12e3 L/K 5.12¢3 L/ K 5.12¢3 L/ K

Table 2: Storage per user and per iteration for different data rates (L antennas).
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Figure 1: UMTS-FDD transmitter for uplink (K users).
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Figure 2: Timeslot structure in UMTS-FDD uplink.

29



IDescr./Despr Time Mux.
DPDCH of ngllt,al (i) Data/Pilots
B path 1 . path 1
i data (; i
C TPy (1) [
= path Py pilOt . path Py, xk,l,l (l)
9 Th,1,1
k.p [Descr./Despr Extract. .
DPCCH of Pilots of Tp1,p, (0 .
Beamforming] yk;,l (Z)
path 1 1 path 1 —
. . path 1
pllOt () .
i Lp1,p\t Path 10
path P, [ path Py Combining [ ™
) A Beamforming] yk,Pk (’L)
wk,L,l(l) path Py
: IDescr./Despr Time Mux.
: DPDCH of mgf“g?‘l (1) Data/Pilots )
a - =1 path 1 path 1 wk,L,PIc (l)
7 (n) ot :
H ata ; H
"Ly L.Py (i) :
=1 path Py pﬂOt . path Py
k.L, (1)
IDescr./Despr Extract.
DPCCH of Pilots of
1 path 1 1 path 1
pilot /.
: )
= path P, [ path P k,L, Py ( )
Figure 3: Space-time combiner for user k (L antennas, Py paths).
Y . Received signal 71(n)
Y ] 2(n)
Y \ J L r(n)
Vo I Yoo
i Iteration | | Iteration | | Iteration iTteration
o I A A A [ P A
RO e D ()
L A S k.l
-------------- Mn)J; e,
LK S Ti K 1 K SISO K K S Ti LK Int f‘ LK
pace-l1l1me / - — / / - / - pace-1lime / - nterterence
7 | Combining [7 11 4 Decoding [/ 7| II 77 | Respreading [/ | Cancellation | 7
=(4) ()¢, (4 ¢, ~(j+1)
e (n) 2 (1) o (1) T (n)

Figure 4: Structure of the iterative space-time interference cancellation receiver (.J itera-

tions, L antennas, K users).
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Figure 7: Computational complexity of the different modules in one iteration (144 kbps
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Figure 9: Performance of the non-adaptive scheme (16 users, 4 antennas).
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Figure 10: Performance of the adaptive scheme (16 users, 4 antennas).
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Figure 11: Performance comparison of adaptive and non-adaptive schemes in iteration 4.
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REVIEWER 1

e REVIEWER 1:

1) Page 2: The authors mention specifically the high load cases for perfor-
mance measures. In real life networks the load is never "high”. Basically
the noise rise (see [10] pages 160 ff the definition) is around 3-6 dB. If

the noise rise is more than that, the results tend to be overoptimistic.

AUTHORS: One objective of introducing multiple antennas in the UMTS system is
to increase the system capacity. It is true that real life networks never reach “high”
loads because they use low-complexity receiver technologies (Rake receiver, single-
antenna). The noise rise approach in [10] is related to these “first-step” receivers.
Thus, the 3-6 dB value does not apply in the paper context, since it does not take
into account the interference reduction capability of advanced receivers with mul-

tiple antennas and multi-user detection.

e REVIEWER 1:

2) Page 5: The high system load is not a reference for performance (see

comment 1)

AUTHORS: See answer to comment 1.

e REVIEWER 1:
3) Page 6: Is the padding bits same as puncturing?

AUTHORS: No, padding bits are non-informative bits, added to coded bits to
obtain a blocksize which is a multiple of F' = TT1/10. This is done in the radio

frame equalisation, which is included in the II, function. Rate matching, which is



also included in the II; function, performs either padding or puncturing to obtain
a spread block which can be transmitted on a 10 ms frame. In contrast to padding,

puncturing discards bits. For more details, see reference [1].

To clarify this point, we added in line 10, page 6, “The rate matching, performing

either puncturing or padding, modifies...”.

REVIEWER 1:

4) Page 8: d.cos(f;,), there is dot, not a multiplication sign. Should it be

changed?

AUTHORS: For clarity reasons, we deleted all dots.

REVIEWER 1:

5) Page 8: Actually You have not stated the meaning of the rho in equa-

tion (1), although it is quite obvious. But still You should mention it.

AUTHORS: In page 7, last paragraph of section 2.2, we replaced
“hgp(n) = prp(n)exp(jvg,p(n))” by “hg,(n) with amplitude pg,(n) and phase

7

Vp(n)”.

REVIEWER 1:

6) Page 8: Equation (3): I could not find any statements about the pulse
shaping filter, why? This pulse shaping filter is also very important com-
ponent in receiver side and transmitter side. At least I was expecting a
statement that we handle rectangular pulses, thus the pulse shaping is

neglected or someting like that.

AUTHORS: OK, as you proposed, we did the following modification before (3):



“Assuming rectangular pulses and chip-rate sampling at the receiver side, the re-

ceived sample ...”.

REVIEWER 1:

7) Page 8: You mention that the observation signal on antenna 1 is filtered
by two descramblers. The word ”filtered” is quite unusual in this context.
I understand the intention, but at least I have found that most of the

authors use ”"multiplied” or ”xor” in this context.

AUTHORS: OK, we replaced “filtered” by “handled”.

REVIEWER 1:

8) Page 9: Again (under equation (6) ) there is this dot in f;;, =

exp(—J.¢,1p). Should it be something else, like multiplication sign?

AUTHORS: See answer to comment 4.

REVIEWER 1:
9) Page 9: Again dot under the equation (7), a;, = pipexp(—j.vkp)-

AUTHORS: See answer to comment 4.

REVIEWER 1:

10) Page 9: Have You defined all the variables used in the equations (like

v)?

AUTHORS: v, ,(n) is now defined, see answer to comment 5.



e REVIEWER 1:

11) Page 10: You say that You perform the interference cancellation.
What exactly You mean by that? Do You subtract respread signal from
something or own signal from something? Or do You use some sort of
weighting? There is plenty of ways how to perform the IC. Some of them

can be numerically unstable.

AUTHORS: As stated in the paragraph before section 3.1 (“A space-time respreader
performs spreading of the II; output signal, modulation with reinsertion of DPCCH
in the quadrature component, amplitude weighting with coefficients (; and (.,
scrambling and filtering by the space-time channel impulse response to rebuild each
users’ contribution in the global interference on each antenna.”), interference can-
cellation is performed at the chip level. Furthermore, we added “soft” in “From
these contributions, interference cancellation...”, to underline that soft estimates of

coded bits are used in the cancellation process.

e REVIEWER 1:

12) Page 12: I did not quite catch how did You end up with equation (12).

Could You name the variable {;;, more accurately than ”estimate”?

AUTHORS: To precise the definition of variable &;, we added before equation

(12): “to find at iteration j the estimate {A,(fzp of the phase rotation ¢, defined in

2)".

e REVIEWER 1:

13) Page 12: Under equation (13): right side — > right hand side (add
that hand word there)

AUTHORS: OK.



e REVIEWER 1:

14) Page 13: Last sentence in section 3.2: Commas missing around the

”...,thanks to adaptive signal processing impacts,...”

AUTHORS: OK.

¢ REVIEWER 1:
15) Page 13: Section 3.2.1. Do You really need commas around ”...,i.e.,...” ?

AUTHORS: Yes, according to the English typography and the IEEE guidelines, it

seems that these commas are required.

e REVIEWER 1:

16) Page 14: Equation (16). Don’t You need absolute value of the error?
What does the equation (16) represent? I mean in error terms we usually
need absolute values, since error means ”how much we are deviating from

the correct value”.

AUTHORS: The LMS algorithm requires a signed error signal, see [9] for more de-
tails. Roughly speaking, the error sign gives the convergence direction. This error
represents the difference between the expected signal and the observed one, both
prior to path combining. To clarify this point, we changed the sentence before equa-
tion (16) to: “... consists in subtracting, prior to path combining, the observation
signal, i.e., the beamforming output, from the expected signal, i.e., a pilot weighted

by the channel coefficient.”

e REVIEWER 1:

(4)

17) Page 14: Equation (17): You use same ek;p notation for the pilot



aided error as with the original. Should You differiate them somehow,

since they are not the same?

AUTHORS: By e,(cj;l),, we mean the error signal involved in equation (15), i.e., in the
beamforming LMS algorithm, independently of the way it is obtained. For instance,
in (20), we used another notation for the error signal of the other LMS algorithm,

the path combining one. Therefore, we prefer not modifying the notation.

REVIEWER 1:

18) Page 14: Is there any numerical problems related to the definition of

equation (17)?

AUTHORS: Modifying the error signal as done in (17) does not impact the stabil-
ity. Indeed, from the beamforming point of view, changing the reference signal only
changes the phase of the obtained beamformer. Besides, using the same pilot symbol
Agfl)(i) in the beamforming and path combining LMS algorithms, ensures a con-

vergence of both filters through the same direction, avoiding the “ping-pong” effect.

REVIEWER 1:

19) Page 18: About the complexity, the authors have chosen the MAC
approach. From the practical point of view I would say that it is feasible
if we consider DSP’s, since in DSP we can do one multiplication and one
summing in one clock cycle. But from ASIC point of view the it’s not
feasible, since we need more circuits to perform the multiplication than

the summing.

AUTHORS: Implementation work in our research center is mainly based on fixed

point DSPs. This is the reason why we expressed the complexity in terms of MACs.



To clarify this point, we added in the third sentence of section 4.1:

“Focusing on a fixed point DSP implementation.”

REVIEWER 1:

20) Page 18: Isn’t the division complexity related to the word length? I
mean that You do the division is some table based method, where the
complexity is depending about how big is the word? Do You refer to 8

bits word?

AUTHORS: For the 10 MAC approximation (division and square root), we based
our thinking on an iterative algorithm (e.g., CORDIC), where the number of iter-
ations is roughly equal to the required precision, i.e., the word length. We approxi-

mated one iteration to one MAC.

To precise it, we added at the end of the first paragraph of section 4.1:

“assuming an iterative implementation.”

REVIEWER 1:

21) Page 18: Why You have estimated the division and square root to
be 2.5 times more complex than the multiplication and 10 times more

complex than adding? I would like to know the reasoning.

AUTHORS: See answer to comment 20.

REVIEWER 1:

22) Page 18: In equations (23) and (22) there is the dots. See e.g. com-

ment 8.

AUTHORS: See answer to comment 4.



e REVIEWER 1:

23) Page 19: Do You need the comma after word Thus below equation

(25)?

AUTHORS: Yes, comma, is often used after “Thus”.

e REVIEWER 1:

24) Page 20: In the results You plot BER = 10E-5, which means that
You need at least 10E6 bits to be simulated, supposing that You need
to generate 100 errors in the simulation in order that the simulation is
statistically correct (this is a rule of thumb). So how many bits/frames

You have simulated totally? This is very important issue here.

AUTHORS: We simulated 150 frames, i.e., 216000 information bits per user. As
we averaged the BER over 16 users, it was computed on 3456000 information bits.

Thus, the results given for BER=107° rely on more than 300 errors.

e REVIEWER 1:
25) Page 29: Figure 4. There is L.K. Should it be L*K?

AUTHORS: OK.



REVIEWER 2

e REVIEWER 2:

Comments for Author: A result showing where the ” MRC == MMSE
under ideal IC ” assumption is not true would be interesting. Or, when

the receiver fails is this the failure mode?

AUTHORS: In the WDCM model we used, it may occur that several paths have
the same delay with distinct DOAs. Thus, the hypothesis that the LMS algorithm
converges to the MRC solution is not always true. In this case, the respreading is
sub-optimal as mentioned in the sentence before section 4. Simulation results in-

clude the impact of this sub-optimality.

e REVIEWER 2:

Does the complexity analysis include the IC block? Shouldn’t IC block

complexity scale with K since you are adding K signals?

AUTHORS: Yes, the complexity analysis includes the IC block. As this complexity
is expressed on a per user basis, the number of users K does not appear in table 1.
However, as the storage of the received signal is common to all users and all iter-
ations, we had to express it separately in table 2. This is inversely proportional to

K, since the storage is also given on a per user basis.

To point out that the IC complexity is including in equations (23) and (24), we
added after equation (24): “These complexity figures include the complexity of the

interference cancellation process.”
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REVIEWER 3

¢ REVIEWER 3:
Comments for Author: Minor changes only are needed :

- please specify the criterion used to distinguish ”distinct” path delays

in the multipath WDCM, i.e. to pass from P] to P

AUTHORS: In the paper, we do not consider oversampling. Thus, resolvable paths
have delays expressed in chip durations. As delay for path p of user k is 73, chips,

by distinct delays, we mean distinct values of 7y .

To clarify it, we replaced “with distinct delays” by “with distinct delays 73 ,”.

e REVIEWER 3:
- in equation (6) the index 1 goes from 1=1 (not 1-1) to 1=L

AUTHORS: This seems to be a printer failure. We did not observe this error on

our hard copies.

e REVIEWER 3:

- please expand a bit the explanation of equation (13), i.e. phase unwrap-

ping followed by a linear regression.

AUTHORS: To clarify this point, we modified the paragraph preceding equation
(13) as follows:

“Since the antenna array is a ULA, according to (2), the phase rotation &y, for
¢ =1,...,L,is an affine function of the antenna index /. However, the estimate é,ﬁ{ip

belongs to (—m;m]. Therefore, a phase unwrapping is necessary, which suppresses

11



the effect of the modulo-27 operation. The L obtained phases are corrupted by
(4)

kp and

noise, which is mitigated by a linear regression. This yields the estimates 0

Finally, 5y

42
iy is obtained by minimization of dg’; 7

REVIEWER 3:
- Fig. 1 bigger if possible

AUTHORS: OK. In the new version, we drew Fig. 1 as big as possible.

REVIEWER 3:

- Simulations : what about scenarios with users transmitting at different
rates and/or with different powers (no power control)? is BER affected
in this case by number of antennas, number of iterations and pilot energy

allocation ? what about more than 4 BS antennas and higher-speed MSs?

AUTHORS: The main objective of the paper is to compare adaptive and non-
adaptive space-time techniques in an interference cancellation structure. There are
a lot of parameters in the system. We chose a specific scenario and presented results
for 1 and 16 users and 1 and 4 antennas. The paper already includes 4 simulation
results’ figures. Presenting additional results, with different user amplitudes, differ-
ent number of antennas, pilot energies, data rates, would lead, from our point of

view, to similar results and redondant figures.

12



