
AUTOMATIC COARSE-GRAIN PARTITIONING AND AUTOMATIC CODE GENERATION
FOR HETEROGENEOUS ARCHITECTURES

M. Raulet1,2, M. Babel1, O. Déforges1, J.F. Nezan1

(1) CNRS UMR 6164 IETR / INSA Rennes
20 av des Buttes de Coësmes

(2) Mitsubishi ITE TCL
1 allée de beaulieu

35000 Rennes, France

Y. Sorel3

(3) INRIA Rocquencourt
OSTRE team

B.P. 105 78153 Le Chesnay Cedex
France

ABSTRACT

Real-time signal, image, and control applications have very
important time constraints, involving the use of several
powerful numerical calculation units. The aim of our work
is to develop a fast and automatic prototyping process ded-
icated to parallel architectures made of both PC and sev-
eral last generation Texas Instruments digital signal proces-
sors: TMS320C6X DSP. The process is based on SynDEx,
a CAD software improving algorithm implementation onto
multi-processor architectures by finding the best matching
between an algorithm and an architecture. SynDEx kernels
for automatic PC and DSP dedicated code generation have
been developed with the new SynDEx repetition feature. A
full coding application (LAR) illustrates the results.

1. INTRODUCTION

Although new mono-processor architectures (Personal
Computer) provide ever-increasing computational power,
they cannot cope with the ever-increasing complexity of
some control, signal and image processing applications.
Parallel architectures are needed to satisfy real-time con-
straints (computation load balancing), as well as to take
into account the distributed nature of the resources (sen-
sor/actuator, computation, memory) of real-time applica-
tions. These heterogeneous architectures, built from differ-
ent types of programmed components (RISC, CISC, DSP
processors) and/or of non-programmed components (ASIC,
FPGA, full-custom integrated circuits), all together con-
nected through a network of different types of communi-
cation components (point-to-point serial or parallel links,
multipoint shared serial or parallel buses, with or without
memory capacity), are called multi-components.

The goal of a prototyping methodology is to go from a
high level description of the application to its implementa-
tion onto a target architecture. Performances of the process
can be evaluated by different aspects:
- maximal independency with regards to the architecture,

- possibility to handle heterogeneous multi-component ar-
chitectures,
- maximal automation during the process (partitioning, code
generation),
- efficiency of the implementation both in terms of executive
time and resource requirements.

This paper presents a prototyping methodology based
on SynDEx which satisfies the previous criteria for multi-
processor architectures. Although SynDEx is basically a
CAD tool for partitioning and code generation, we demon-
strate that SynDEx can also be directly used as the front-
end of the process for functional check. Furthermore, we
show that data parallelism can be easily highlighted at a
high level of description for distributed implementation pur-
poses, through the new repetition feature of SynDEx associ-
ated with the data flow graph formalism. The methodology
is illustrated with a video coder (LAR) automatically imple-
mented onto a PC+Multi C6x platform.

2. SYNDEX V6

SynDEx1 is a free academic system level CAD software de-
veloped in INRIA Rocquencourt, France. It supports the
AAA methodology (Adequation Algorithm Architecture)
for distributed processing [1].

2.1. Adequation Algorithm Architecture (AAA)

A SynDEx application (fig.1) is made of an algorithm graph
(operations that the application has to execute) which spec-
ifies the potential parallelism, and an architecture graph
(multi-components target, i.e. a set of interconnected pro-
cessors and specific integrated circuits), which specifies the
physical parallelism.

”Adequation” means an efficient mapping. Performing
an adequation consists in executing heuristics which seek
for an optimized implementation of a given algorithm onto
a given architecture.

1www-rocq.inria.fr/syndex/

An implementation (fig.1) consists in distributing (al-
locating parts of algorithm onto components) and schedul-
ing (giving a total order for the operations distributed onto
a component) the algorithm onto the architecture. The
scheduling is performed off-line [2].

In the AAA methodology, an algorithm is specified as
a data flow graph infinitely repeated. Each edge represents
a data dependence relation between vertices, and the corre-
sponding vertices n-uple is ordered (i.e. its first element is
the producer vertex while the other ones are the consumer
vertices).

���� ����

����	

�	�	
�	�	

�
��������

����
������������� �����
���������

�������
��

Fig. 1. SynDEx description graphs and the resulting timing
diagram.

Moreover vertices are operations; operation stands for a
sequence of instructions which starts when all its input data
are available and which produces output data at the end of
the sequence. In SynDEx, there is an additional notion of
reference. Each reference corresponds to the definition of
an algorithm (we will say ”definition” instead of ”algorithm
definition” for the rest of this paper). The same definition
may correspond to several references to this definition. An
algorithm definition is a repeated data flow graph similar to
those in AAA, except that vertices are references or ports.
It enables hierarchical definitions of an algorithm. A ref-
erence in a definition may correspond to a definition which
contains several references and so on. Ports are used only
for propagating back and forth edges along the hierarchy.

2.2. Specification of regular algorithms

2.2.1. Principles

A regular algorithm typically presents “potential data par-
allelism” which is specified with a new feature of SynDEx
allowing to repeat an algorithm. This is achieved by creat-
ing a reference to a definition such that the ratio between
the number of elements of each input (resp. output) and the
number of elements of the output (resp. input) it is con-
nected to, is equal to the number of repetitions (Fig. 2).
Some inputs may have ratio one, while the common ratio is
greater than one. In this case the input is replicated as many
times as the common ratio (Fig. 3).

op1
m k

op1 op3m n
Explode

op2_1

op2_2

op2_p

m Implode
n

k
k

k

k

k

k

l

l

l

l
l

l

p = m/k = n/l

op2 l op3
n

FORK JOIN

SynDEx user description

Corresponding expanded graph

Fig. 2. Algorithm repetition.

Note that the number of repetitions applied to the def-
inition is implicit. SynDEx determines this number from
the algorithm specification and automatically repeat the al-
gorithm definition and create the corresponding expanded
graph (Fig. 2). The repetition factor is displayed next to
the name of the reference. It is the expanded graph which
will be taken into account during adequation and code gen-
eration. The expansion will introduce new vertices called
“explode” and “implode”. The explode vertex extracts each
element of the data it receives for each repetition of the def-
inition, whereas the implode vertex builds the data it sends
by concatenating each separated element produced by each
repetition of the definition.

2.2.2. Example

We illustrate the repetition principle used for specifying
regular algorithm by the multiplication of a vectorV =
{v1, v2, . . . , vm} by a scalars giving a vector W =
{w1, w2, . . . , wm} as a result:W = s · V .

A direct representation by a unique operation of a mul-
tiplication of a vector by a scalar does not express any par-
allelism. Nevertheless, data parallelism can be found at a
finer granularity. Letm be the dimension of the vector. We
may specify the repetition bym of a multiplication between
two reals giving a real as a result, by referencing the defini-
tion of the multiplication and by connecting one of the two
inputs to an output which is a vector ofm real (V), and the

other input to an output of one real (s), and by connecting
its output to an input which is a vector ofm reals (W) (Fig.
3). The common ratio ism, and one input has a ratio one,
that is to say the real is replicatedm times in order to be
multiplied by one of them elements of the vector.

m 1

m
Explode

m Implode

p = m

Mult 1 W

FORK JOIN

s

V

1

1

m

V W

Mult_1

Mult_2

Mult_p

s
1

1

1

1

1

1

1

1 1
1

1 11 1

1

1
1

1

DIFFUSE

m m

SynDEx user description

Corresponding expanded graph

Fig. 3. Example of repetition: Multiplication of a vector
and a scalar.

Such a description can be easily transcribed to image
processing: data can be split into several parts (slices) that
can be coded independently. So the process of these slices
is parallelized through a similar scheme.

2.3. Automatic Executive Generation

The goal of SynDEx is to directly perform an implementa-
tion from an algorithm specification. It automatically gen-
erates a “generic executive” independent of the processor
target into several source files (fig.4), one for each proces-
sor. Moreover, it generates automatically a makefile for au-
tomating the specific compilation chain of the architecture.
These generic executives are dedicated to the application
without any support of RTOS. They are composed of a list
of macro-calls. The macro processor M4 transform this list
of macro-calls into compilable code for the specific proces-
sor target. It replaces macro-calls by their definition given
in the corresponding “executive kernel”, which is dependent
of the processor target.

��
��� ���	�
�� ���	�

�
��

������������ ����� �
���������������	
����	�

���������	

��
��������	��
�����
�	�

�����
���

�	����

��	����	���� ��
������� � !������ �

"���	� �����

#���������	
$

�!�%��"!� ������� ��&�����

#���'%�(�)��**$

�!�%��"!� ������� � &���

��
��+������� �
��&���

#�,�!��,��,�!-$

��	�!�

�����
���

)�����

��%����	�

Fig. 4. SynDEx utilization global view

SynDEx kernels are available for the following pro-
cessors: Analog Device ADSP 21060, SHARC, Motorola
MPC 555 et MC 68332, Intel i80x86 et i8096, Unix/Linux
workstations, Texas Instruments TMS320C40. The kernel
for C6x was presented in detail in [3]. We had to develop a
PC kernel and a PCI media interface in order to manage our
heterogeneous platform described in the next section.

3. FAST PROTOTYPING METHODOLOGY

3.1. Platform

The chosen platform enables the user to obtain a coherent
and modular target architecture. Our platform is composed
of a Sundance motherboard and two SMT335 TIM mod-
ules. The SMT335 TIM consists of a Texas Instruments
TMS320C6201 (64 KB of internal program memory, 64
KB of internal data memory) running at 200MHz. Modules
are populated with 512KB of synchronous burst SRAM and
16MB of synchronous DRAM.

A Field Programmable Gate Array (FPGA) is used to
manage global bus accesses and implement six communi-
cation ports (20 MB/s) and two Sundance Digital Buses
(SDB). SDBs are 16-bit data parallel links achieving high-
speed data transfers (200 MB/s each), an important point in
regards with the large quantities of data (images and their
related data) needed in video coding.

This platform is generally used in astand alone config-
uration. Video algorithms can be characterized by a fix data
driven scheduling [4], while requiring high performance
processing. SynDEx does not need any RTOS like 3L-
diamond product. It generates dedicated executives based
on off-line scheduling [2] leading to the minimum overhead
in space and time. Moreover SynDEx avoids inter-processor
communication deadlocks.

C6x_2 (DSP C6x)
pci

sdba

sdbb

C6x_1 (DSP C6x)
pci

sdba

sdbb

PC (standard processor)
pci

pci (PCI)

SDBa (SDB)

SDBb (SDB)

Fig. 5. SynDEx PC-multi-DSP architecture graph

The Sundance motherboard is a PCI card plugged in a
PC. The description of this architecture is described with a
graph in SynDEx (fig. 5). The motherboard PCI bus can be
used in order to exchange data and to share processing with
the PC. In this configuration, the multi-DSPs platform can
then be seen as aPC co-processor. In terms of Real-Time
Operating System (RTOS), the control part (file or network
management for instance) can be supported by a preemptive
on-line scheduling on the PC [2], while video algorithms

can be more efficiently implemented by a non-preemptive
off-line one on the multi-DSPs PCI board.

3.2. Methodology

Our previous prototyping process integrated AVS as a front-
end [3]. AVS is a software designed for algorithm data flow
graph (DFG) specification and simulation. The DFG was
validated thanks to AVS visualization tools and was auto-
matically transformed to be compliant with SynDEx algo-
rithm input.

The work presented here is based on the use of Syn-
DEx for the specification and for the simulation of the algo-
rithm graph without any commercial tool like AVS. Hence,
SynDEx allows the full rapid prototyping starting from the
application specification (DFG) to the final multiprocessor
implementation (fig.4) in four steps:

Step 1: the digital image designer creates the DFG of
his application with SynDEx. The automatic code genera-
tion provides a standard C code for a single PC implementa-
tion. In this way, the user can design each C function asso-
ciated with each vertex of its DFG, and can check the func-
tionalities of the complete application with standard compi-
lation tools like Visual C++. The automatic code generation
allows the use of visualization primitives (instead of AVS
visualization tools) for an easy functional check of image
and video algorithms.

Step 2: the DFG developed is then used for the auto-
matic prototyping onto monoprocessor targets with chrono-
metrical reports inserted automatically by the SynDEx code
generator. The execution duration associated to each func-
tion (i.e vertex) executed on each processor of the architec-
ture graph (PC and C6x) is automatically estimated through
dedicated temporal primitives.

Step 3: the user can easily use these durations to charac-
terize the algorithm graph by entering these values in Syn-
DEx.

Step 4: SynDEx generates a real-time distributed and
optimized executive, where chronometrical report are not
inserted, according to the target platform. Several platform
configurations can be simulated (processor type, their num-
ber, but also different media connections).

The main advantage of this prototyping process is its
simplicity, because most of the tasks realized by the user
concern the application specification with his usual compil-
ing environment. The required knowledge of SynDEx and
of compilers (Visual C++ and Code Composer) is limited
to simple operations. All complex tasks (adequation, syn-
chronization, data transfers and chronometrical reports) are
executed automatically.

4. LAR IMAGE COMPRESSION METHOD

A new image compression algorithm has been developed in
our laboratory: its implementation on a mixed architecture

provides a validation of our fast prototyping methodology.
This algorithm, called LAR (Locally Adaptive Resolution),
is an efficient technique well-suited for image transmission
via the Internet or for embedded systems. Basically, the
LAR method was dedicated to grayscale still image com-
pression, but extensions have been also proposed for colour
images and videos, and lossless still image compression [5].

4.1. General principle of the method

The basic idea of the LAR method is that the local resolution
(pixel size) can depend on the activity: when the luminance
is locally uniform, the resolution can be low (large pixel
size). When the activity is high the resolution has to be
finer (smaller pixel size). A first coder is an original spatial
technique and achieves a high compression ratio. It can be
used as a stand-alone technique, or complemented with a
second coder allowing to encode the error image from the
first coder topology description. This second one - called
a spectral coder - is based on an optimal block-size DCT-
transform. This study concerns only the first spatial coder:
figure 6 presents its global process.

Source image

 Non uniform
 Sub−sampling

Compressed Image

Grid

 Blocks
Average

 Entropic coding

DPCM

Gray−Level
 Blocks

 Post
Processing

Low Resolution LAR Image

 Entropic coding

Fig. 6. Global scheme of the spatial coder.

4.2. Spatial coder

The image is first sub-sampled by8×8 squares representing
local trees. Then, each one is split according to a quad-
tree scheme depending on the local activity (edge presence).
The finest resolution is typically2 × 2 squares. The image
can be reconstructed by associating each square with the
corresponding average luminance in the source image. The
image contents information given through the square size
is considered advantageous for the luminance quantization.
Indeed, large squares require a fine quantization, as they are
located in uniform area (strong sensitivity of human eye to
brightness variations). As for the small ones, they support a
coarse quantization as they are upon edges (low sensitivity).

The intensity value of each block is encoded through a
DPCM approach. The process is done in one pass (raster
scan), by means of the Gradient Adjusted Predictor.

Size and luminance are both encoded by an adaptive
arithmetic entropic encoder. The average cost is less than
4 bits per square. Perceptible blocks artifacts in homoge-
nous areas are easily removed by simple but efficient post-
processing based on adaptive linear interpolation. More-
over, the previously described content-based decomposition
leads to propose an automatic coarse edge-driven segmen-
tation at both the coder and the decoder.

4.3. Construction of the grid

The size of the pixels is determined by the estimation of the
local activity. For that purpose a morphological gradient is
calculated inside a square area: if the difference between
dilated and eroded values (maximal value - minimal value)
is low, the square size can be increased. A straightforward
implementation of this procedure requires a lot of computa-
tional time. A more suitable solution consists of decompos-
ing the process into a succession of elementary operations.

B
2 B’

2
B

4

Fig. 7. Structuring elements.

Let B2, B′
2 and B4 (see figure 7) be structuring ele-

ments. One can easily show that

B4 = B2 ⊕B′
2. (1)

If I denotes the image matrix, according to the Minkowski
addition, the erosion and the dilation byB4 are defined re-
spectively by

I ªB4 = (I ªB2)ªB′
2,

I ⊕B4 = (I ⊕B2)⊕B′
2.

(2)

Originally the use of the structuring elementB4 requires16
operations, whereas the Minkowski property implies now
only 8 computations.

For our purpose, we only need to handle the odd ele-
ments of our image. Let↓ denotes the sub-sampling opera-
tion, the equations 2 become

(I ªB4) ↓ 2 = ((I ªB2)ªB′
2) ↓ 2,

(I ⊕B4) ↓ 2 = ((I ⊕B2)⊕B′
2) ↓ 2.

(3)

As
B′

2 ↓ 2 = B2,

the equations 3 are equivalent to

(I ªB4) ↓ 2 = ((I ªB2) ↓ 2)ªB2,

(I ⊕B4) ↓ 2 = ((I ⊕B2) ↓ 2)⊕B2.
(4)

Figure 8 shows the different stages of our non-uniform de-
composition, based on the previous described technique.
We first compute the gradient inside2 × 2 blocks and if
the value obtained is lower than a given threshold, the re-
sulting matrix is sub-sampled by two before repeating the
morphological process.

Source Image

Dilation
 2 x 2

Erosion
 2 x 2

+
− < T

 Contours
2 x 2 Blocks

Homogenous
4 x 4 Blocks

Dilation
 2 x 2

+
−

Erosion
 2 x 2

< T

Dilation
 2 x 2

Erosion
 2 x 2

Homogenous
8 x 8 Blocks

− + < T

2 2 Sub−sampling by 2

2 2

2 2

Fig. 8. Non-uniform decomposition

5. LAR CODER IMPLANTATIONS

5.1. SynDEx/LAR application

A first functional check of the still image LAR coder was
realized on a PC. As the generated code is totally portable
on DSPs (programs in C), this coder has been automatically
implemented onto multi-processors (PC + multi-DSPs).
There is no noticeable acceleration between one and two
DSPs: this is due to the fact that the algorithm was not spec-
ified with enough potential parallelism. This is why we in-
creased the potential parallelism by splitting the image into
two slices (two is equal to the number of available proces-
sors). Then, the coder is repeated twice (fig. 2) presenting
data parallelism.

5.2. Distributed implementation results

As we intend to develop a video application, the process-
ing time is critical and must be exactly equal to 40ms
(video constraint). Here we lay the emphasis on CIF im-
ages (Mpeg4 image format: 352*288 pixels).

We simulate20ms per CIF image on the PC which is
not an embedded system. Our embedded system is com-
posed of two C6201 DSPs which perform all the coder pro-
cessing. Once the functional description is checked on the
PC, the role of the PC is to send the data corresponding to
the image to be coded and then to receive the data from the
platform in order to display the reconstructed image. The

PC and PCI media have been added on the SynDEx graph,
in order to get an automatic code generation.200ms are
needed to encode an image with one DSP, and120ms with
two DPSs. The gain factor is1.6. Maximum rate could be
2. Indeed the available internal memory size of the C6201
is not sufficient to store all the data, that is why the pro-
cessing time is here so large and does not respect the real-
time processing. All the data required for our coder is allo-
cated in the external memory which lets up our application.
Some simulation on a short part of the CIF image (16 lines)
shows us that we could expect an accelerating factor of7.2.
Our DSPs memories are undersized for our application. Fu-
ture developments will integrate new C6416 DSP running
at 400Mhz - twice as fast as C6201- and providing 1MB of
internal memory - fifteen times more than C6201’s memory
- which is enough to store all the data needed to the coder.
So we could obtain an accelerating factor of14.4 and could
compute the CIF image in8.5ms with two C6416 and we
could consequently consider our platform as an efficient co-
processor.

6. CONCLUSIONS AND PERSPECTIVES

This paper has presented a distributed LAR encoder imple-
mentation along with its design methodology, allowing both
an automatic distributed implementation and a minimal em-
bedded code. The multiprocessor implementation is opti-
mal thanks to SynDEx and more particularly its repetition
feature. This feature allows to describe the split of an image
into slices in the SynDEx algorithm graph, increasing the
potential parallelism of the application.

This paper also describes visualization primitives that
enable the use of SynDEx as the front-end of the prototyp-
ing process instead of AVS. The main advantage is to de-
crease the complexity of the complete process. Another ad-
vantage is that SynDEx can be freely downloaded whereas
AVS is a commercial tool. Algorithm mapping, synchro-
nizations and data communications are automatically gen-
erated and optimized for the PC-multi-DSP target architec-
ture.

The implementation of elementary and regular opera-
tions (DCT for instance) onto a non programmable compo-
nent such as FPGA would give higher performances. We
have work in progress in order to study co-design approach
with SynDEx [6] for the automatic implementation of these
regular operations onto a non programmable component.

We are also working on an Mpeg-4 coding applica-
tion. As the application described in this paper, an Mpeg-4
codec can be fully parallelized using slices so that multi-
components architectures will be used to reach real-time
performances.

This work is partially supported by Mitsubishi Electric
ITE-TCL. A SynDEx description of an UMTS application
[7] is actually developed by Mitsubishi and will take bene-

fits of the results presented here.

7. COPYRIGHT FORMS

Copyright 2002 IEEE. Published in The IEEE 2003 Work-
shop on Signal Processing Systems (SIPS’03) scheduled
for August 27-29, 2003 in Seoul, Korea. Personal use
of this material is permitted. However, permission to
reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for re-
sale or redistribution to servers or lists, or to reuse any copy-
righted component of this work in other works, must be ob-
tained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone:
+ Intl. 908-562-3966.

8. REFERENCES

[1] T. Grandpierre, C. Lavarenne, and Y. Sorel, “Opti-
mized rapid prototyping for real time embedded het-
erogeneous multi-processors,”7th International work-
shop on Hard-ware/Software Co-Design, IEEE Com-
puter Society, ACM SIGSOFT, IFIP, pp. 74–78, May
1999.

[2] F. Balarin et al., “Scheduling for Embedded Real-
Time Systems,”IEEE Design and Test of Computers,
January-March 1998.

[3] J.F. Nezan, M. Raulet, and O. Deforges, “Integration
of mpeg-4 video tools onto multi-dsp architectures us-
ing avsyndex fast prototyping methodology,” inIEEE
Workshop on Signal Processing Systems (SIPS), Octo-
ber 2002.

[4] J.F. Nezan, Integration de services video Mpeg sur
architectures paralleles, Ph.D. thesis, IETR INSA
Rennes, November 2002.

[5] M. Babel, O. D́eforges, and J. Ronsin, “Lossless and
Lossy Minimal Redundancy Pyramidal Decomposition
for Scalable Image Compression Technique,” inPro-
ceeding of IEEE ICASSP 03, Hong Kong, April 2003.

[6] S. Le Nours, F. Nouvel, and J.F. Helard, “Example of a
co-design approach for a mc-cdma transmission system
implementation,” Journees Francophones Adequation
Algorithme Architecture (JFAAA), December 2002.

[7] C. Moy, A. Kountouris, L. Rambaud, and P. LeCorre,
“Full digital if umts transceiver for future software radio
systems,” inProceeding of ERSA’01, Las Vegas, June
2001.

