
RAPID PROTOTYPING FOR AN OPTIMIZED MPEG4 DECODER IMPLEMENTATION
OVER A PARALLEL HETEROGENOUS ARCHITECTURE

Ventroux N.1, Nezan J.F.1, Raulet M.1,2, Déforges O.1

1 CNRS UMR 6164 IETR laboratory / INSA Rennes
20, av des Buttes de Coëmes, CS 14315, 35043 Rennes Cedex, France

2 MITSUBISHI ELECTRIC ITE-TCL, 1 allée Beaulieu, CS 10806, 35708 Cédex 7, Rennes, France
Contact : {jnezan, mraulet, odeforge}@insa-rennes.fr

ABSTRACT

Sequential Mpeg-4 solutions actually developed for single
processors try to integrate the most functionalities as
possible in an unique software, and are generally oversized
compared with the actual service requirement. Moreover,
they can hardly be projected onto multiprocessors targets,
leading to an extra load of source code and calculations,
but also to a sub-optimal use of the architecture
parallelism. This paper introduces a distributed Mpeg-4
application, where the system part is hosted by a standard
PC, and the video decoder is supported by a multi-DSPs
board. In particular, we present our AVSynDEx
methodology allowing both an incremental building, an
easy update on the video decoder description, and a quasi-
automatic implementation onto a multi-C6x platform.
We also define a global scheduler managing the parallel
execution of the video and system applications.

1. INTRODUCTION

Multimedia applications introduce a much higher
degree of complexity to traditional digital signal
algorithms as they manipulate sounds, images and video
from both natural and synthetic origins. The required
computational performances should always be improved
for a real time use.

Mpeg-4 is a new multimedia standard adopted by the
Moving Picture Experts Group (MPEG) [1]. It defines not
only the way to decode audio and video, but also how to
represent, combine and synchronize them in the bitstream.
An Mpeg-4 coder/decoder can then be divided in ten main
parts (system, visual and audio for instance) with different
timing performances requirements and execution
behaviors. The system part is event driven performing
interactions with the user or channels, but demanding a
low computation power. On the other hand, audio and
more particularly video parts can be characterized by a fix

data driven scheduling, while requiring high performance
processing. In terms of Real Time Operating System
(RTOS), the system part can be supported by a preemptive
on-line scheduling, while audio and video can be more
efficiently implemented by a non-preemptive off-line one
[2].

This paper presents a partial solution for a whole
Mpeg-4 decoder distributed over a PC-Multi-DSPs
architecture. An optimized video decoder has been
completely implemented onto the multi-DSPs board,
through our prototyping methodology depicted in the
following. A simple system runs on the PC, providing
bitstreams and displaying rebuilt images. The global
application is then distributed and supported by an off-line
scheduling. Communication and synchronization
primitives via PCI bus have been developed to insure a
parallel execution.

2. MPEG4 ORGANIZATION AND DESIGN

Mpeg-4 [3] is a toolbox which can address various
services at different bitrates and complexity. In a real time
context, calculations and resources have to be minimized
by restricting the code to its necessary requirements.
Mpeg-4 introduces the concepts of complexity and
services through profiles and levels. A profile is a defined
subset of the entire bitsream syntax. For instance, a profile
can deal with visual documents, another one with audio
data. For each profile, functionalities and complexity are
fixed by a level, defined as a set of constraints imposed on
parameters in the bitstream. So Mpeg-4 diagrams can be
optimized and adapted to the application according to a
specific profile@level.
Data flow graphs (DFG) are modular, meaningful ways to
design audio and video parts. The construction of libraries
composed of basic functions (bitstream reading, DCT, …),
allows an iterative bottom-up description, and well
adapted to a defined profile@level. Moreover, a DFG
exhibits the potential parallelism, and the data

dependencies given by the arcs between nodes are
sufficient to express the whole scheduling of this class of
applications. A DFG is then not only a suitable solution
from a functional point of view, it also constitutes the
description input for our prototyping process.

3. AVSYNDEX METHODOLOGY

AVSynDEX [4] is a full rapid prototyping going from
a DFG functional description of the application to the
multi-components implementation.

Figure 1 : AVSynDEx methodology

The digital image designer creates the data flow graph
by means of the graphical development tool AVS
(Advanced Visual System). This CAD software enables
the user to achieve a functional validation of the
application. Then, a quasi-automatic translator converts
this representation into a new data flow graph compatible
with SynDEx (Synchronised Distributed Executive). This
last tool schedules and distributes the data flow graph
according to the parallel architecture and generates an
optimized distributed executive. This executive is loaded
onto the platform by using the classical loader of the target
processor. A first mono-processor implementation is
necessary in this process to perform chronometrical
measures of each task of the graph. Then each node of the
DFG can be valued by its execution time, so that SynDEx
is able to find the best distribution of the application. The
process is summarized figure 1.

3.1. AVS

AVS is a high-level environment for the development
and the functional validation of graphical applications [5].
It provides powerful visualization methods. The AVS

environment contains several module libraries dedicated to
the application developments. An application is
constructed as a DFG by inserting existing modules or
user modules into the workspace, and linking their inputs
and outputs. Each module can calls a C, C++ or Fortran
function and the associated library files. Only C functions
are considered here. Hierarchical representations are also
supported by AVS. Arcs of the DFG express both data
transports and execution ranking of the nodes.

A main advantage is the automatic visualization of
intermediate and resulting images at the input and output
of each module. This characteristic enables the image-
processing designer to check and validate the functionality
of the application before the implementation step.

3.2. SynDEx

This free tool is an academic environment designed
and developed at INRIA Rocquencourt France and several
national laboratories take part in this project as we do.
SynDEx is an efficient environment, which uses the AAA
[6] methodology to generate a distributed optimized
executive dedicated to parallel architectures. The purpose
of this methodology is to find the best matching between
an algorithm and a specific architecture while satisfying
constraints. This methodology is based on graph models to
exhibit both the potential parallelism of the algorithm
(algorithm graph) and the available parallelism of the
hardware architecture (architcture graph). The result of
graph transformations is a latency optimized distributed
executive. Results can be visualized and analyzed thanks
to a timing diagram.

Figure 2 : SynDEx description graphs and the resulting
timing diagram

SynDEx avoids the use of a RTOS like 3L diamond
product, implementing the minimum custom-built off-line
scheduling. So spatial and temporal additional costs are
minimized. Moreover, the order of the algorithm tasks is
guaranteed and dead-locking is avoided.

Architecture Graph

Algorithm Graph
Adequation

DSP1 DSP2
FIFOs

Tasks Tasks

Timing Graph

- Hierarchic level
 - Condition
- Repetition

3.3. Material platform

Our target architecture is made of a sundance
motherboard with two SMT335 TIM modules. Each
module contains a Texas Instrument TMS320C6201
running at 200MHz. An FPGA manages global bus
accesses and implements six communication ports (20
MB/s each) and two Sundance Digital Buses (SDB)
achieving high-speed data transfers (200 MB/s each). The
mother board owns a 32 bits PCI bus (PCI-X 2.0 version,
33 MHz) in order to dialog with the PC-Host, but it is
generally used as a stand-alone platform.

SynDEx generates a macro-code independent of the
material target. Communication and synchronization
primitives have to be defined for each processor type.
Then, the M4 macro-processor transforms the macro-code
into a compilable one. In order to get an automatic
implementation onto the multi-DSPs architecture from
SynDEx, we have realized these primitives for
TMS320C6201 DSP and for our platform (management of
SDB buses).

4. MPEG-4 DECODER

4.1. Application representation

We realized a video Mpeg-4 natural texture decoder
[7]. The granularity level of the description has an
important impact on the final implementation. Mpeg-4
natural texture coding tools divide pictures into
macroblocks, composed of four 8x8 blocks of Y channel,
and the associated 8x8 blocks of chromatic component
(U/V). All the Mpeg-4 algorithm descriptions are given at
this block level. Therefore, this is also the finest
granularity adopted in our design. The hierarchical
representation involves four main layers :
- block-level : expressing the sequence of processing

from the multiplexed bistream to the final decoded
block (see figure 3).

- macroblock-level : realizing the macroblock decoding
by 6 block-level instances with an independent order
(U/V) or a dependent one (Y),

- image-level : reconstructing a decoded image by a
temporal recursive iteration of macroblock-level
graph,

- sequence-level : reconstructing a decoded sequence
by a temporal recursive iteration of image-level graph.

Both AVS and SynDEx support conditional node
executing one or another sub-graph depending on a
condition. For example, the type of image I (intra) or P
(predicted) can address a specific optimized sub-graph.

Figure 3 :Block-level decoding process

4.1. Mono and multi-DSPs implementations

A first mono-processor has been automatically generated
from SynDEx onto a TI C6201 DSP. The decoder has
been checked with the set of video sequences provided by
the Mpeg-4 part 4 document (conformance testing). The
average decoding time is 95 ms for a CIF image
(288x354), and 35 ms for a QCIF one (144x177), while
conformance tests specify the upper limit of real time
processing to 100 ms for a CIF, and 40 ms for a QCIF
image.
The prototyping process implements directly the C
functions used at the functional checking. We have only
tried to optimize the mapping of the code onto the VLIW
architecture of C6X by avoiding interleaving loops,
conditional tests and dynamic memory allocation. The
timing diagram of SynDEx exhibits bottleneck of the
application, and optimization at the function-level can be
done. For instance, we have exchanged our IDCT function
by a fast version one available in Texas Instrument
libraries.
By reporting the chronometrical measures of each task,
SynDEx realizes the partitioning over the two DSP. The
best distribution is obtained by taking advantage of both
spatial redundancy of the graph (several block-level sub-
graphs at the macroblock-level) and temporal redundancy
(recursive iterative macroblock-level graph). The speed-up
factor is 1.82 (upper limit : 2) compared to a mono-
processor implementation.

5. DISTRIBUTED HOST-MULTI-DSPS
APPLICATION

5.1. Global application scheduling

The PCI bus of the mother board can be used in order to
exchange data and to share processing with the host. We
designed low level synchronized communication
primitives. A global off-line scheduler of the distributed
application (system+video) can be easily deduced (ref. fig
4). Actually the system part consists only in reading the
whole sequence bitstream, sending the bitstream to the
DSP board, receiving the series of decoded image and
displaying them. The integration of a full system will only
modify the bitstream capture task, remaining the global
behavior.
The host software is a Visual C++ application.
Communications sequences have been added manually in

Inverse
AC&DC
prediction

Inverse
Scan

VLC
Inverse

Inverse
Quant

Inverse
DCT

DC
prediction
direction

both the PC and multi-DSPs codes. The display uses the
Microsoft DirectX library which permits high-speed
accesses to the video card. Nonetheless, frame rates
depend on graphics acceleration capabilities of the card.
With an old-technology video card, time for formatting
and displaying a CIF picture is about 40 ms. Bitstream
decoding and image display are done simultaneously,
ensuring Host and DSP’s parallelism execution.

Figure 4 :Synchronized distributed execution and
communication primitives

5.2. Communication primitives

A maximum DMA transfer rate of 30 Mbytes/s can be
reached, but, the synchronization of the Host and DSP
must be first ensured. Thus, each data transfer enclose two
synchronizations. The receiver must first prevent the
sender that he is ready for receiving data. Then, the sender
writes new data in the DMA memory and prevents the
receiver when finished. Finally, the receiver recovers data
in the DMA memory (Figure 4). PCI communication links
have been modeled and maximum transfer rates for
sending a CIF picture is about 6.7 ms (15 Mbytes/s).
A protected OS like Microsoft Windows does not allow to
access directly to hardware components. We used
WinDriver development toolkit to develop our drivers. A
main advantage is that applications based on a WinDriver
kernel can easily be used under different OS.

Both host and DSPs could be modelized in a unique
architecture graph with SynDEx, as well as the PCI bus
media. Input and output of the video decoder graph can be
then map to the host, and global scheduler including
communication links could be automatically generated.

6. CONCLUSION AND PERSPECTIVES

This paper has presented a distributed Mpeg-4 decoder
implementation along with its design methodology. The
system part can be supported by the host processor with a
traditional operating system while the video and audio

parts are more efficiently implemented using both DSP
processors and an off-line scheduling. The multi-DSPs
platform can then be seen as a PC co-processor. The video
decoder has been developed and integrated thanks to our
prototyping process, allowing both a quasi-automatic
distributed implementation, and a minimal embedded
code.

Low level primitives of synchronization and data
communications via PCI bus between the host and the
DSP platform have been designed. Then, the two
applications (system + video decoder) can be concurrently
executed and synchronized by a global off-line scheduler.

Next developments will concern the integration of a
full standard system on the PC and new video features on
the multi-DSPs board. The PC and PCI media have also to
be added on the SynDEx material graph, in order to get an
automatic generation of the global scheduler.

Acknowledgments : This work is partially supported
by Mistubishi ITE in Rennes.

7. REFERENCES

[1] JTC1/SC29/WG11. "Mpeg-4 applications. Technical Report
N2724", ISO/IEC, Octobre 1999.

[2] L. A. Hall, D. B. Shmoys, J. Wein, "Scheduling To Minimize
Average Completion Time: Off-line and On-line Algorithms",
Proceedings of the 7th ACM-SIAM Symposium on Discrete
Algorithms, January 1996, pp. 142--151

[3] Signal Processing : Image communication, "Special Mpeg-
4", Published by Elsevier Science B.V., January 2000.

[4] V. Fresse, O. Déforges, J.F. Nezan, "AVSynDEx: A Rapid
Prototyping Process Dedicated to the Implementation of Digital
Image Processing Applications on Multi-DSP and FPGA
Architectures, EURASIP journal on Applied Signal Processing,
special issue on Implementation of DSP and Communication
Systems, No. 9, September 2002, pp 990-1002.

[5] International AVS Center, Manchester Visualization Centre,
Manchester Computing University of Manchester. "Available at
http://www.iavs.org".

[6] T. Grandpierre, C. Lavarenne, and Y. Sorel, "Optimized
rapid prototyping for real-time embedded heterogeneous
multiprocessors", Codes'99 7th International Workshop on
Hardware/Software Co-Design, Rome, May 1999.
http://www-rocq.inria.fr/syndex/

[7] J.F. Nezan, M. Raulet, O. Déforges, “Integration of Mpeg-4
Video Tools onto Multi-DSP Architectures using AVSynDEx
fast Prototyping Methodology”, IEEE Workshop on Signal
Processing Systems (SIPS’02), San Diego, October 16-18, 2002.

bitstream

Decoded
image

DSP Board

Bitsream
capture

Im format.
displaying

Image
decoding

Receive
decoded Im

Send
bitsream

Send
decoded I

Receive
bitstream

PC

Global parallel scheduling

Receiver
Sync.

ReceiverSender

Wr data in
DMA mem

Rd data in
DMA mem

WaitWait

Sender
Sync.

Communication primitive

