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ABSTRACT 
 
Reconfigurable equipment within a Software Defined 
Radio approach will be addressed on different levels: the 
control level, the resource level, and the operational level. 
A reconfiguration architecture and functionality will be 
introduced that offers interfaces to management entities 
and controls the internal components to select, negotiate 
and perform the appropriate reconfiguration actions. The 
reconfigurable equipment will make it possible to optimize 
resources for dedicated air interfaces and to update and 
upgrade existing equipment with new features, functions 
and procedures.  
 

I. INTRODUCTION 
 
Equipment for efficient and reliable operation in an End-
to-End Reconfigurability context as considered in the 
E2R [1] project, needs a well-defined framework for the 
local equipment reconfiguration management. Two 
complementary aspects of the configuration management 
issue are considered here: functionality and architecture. 
Both depend on the requirements placed upon the 
reconfiguration process, which are dictated by the different 
usage scenarios. 
 

II. RECONFIGURABLE EQUIPMENT 
 
A. Management and Control Architecture 
 
Reconfiguration inside a terminal, base station or access 
point in an end-to-end manner is affecting all layers from 
the physical layer up to the network and application layer. 
The overall picture of reconfigurable equipment (i.e. 
terminal, basestation or access point) architecture is shown 
in Figure 1. A distributed hierarchical configuration 
management approach is adopted. It is distributed in the 
sense that in an end-to-end reconfigurability context many 
physically or logically distributed entities are required to 
collaborate. It is hierarchical since a configuration can 
have a different representation to different layers of 
abstraction within the reconfigurable equipment or to 
entities outside the equipment (e.g. a configuration 
supporting GSM or UMTS). This representation becomes 
more and more detailed inside as we approach the real 
hardware that needs to be configured [2]. 
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Figure 1: Overall reconfigurable equipment architecture. 
 
The network reconfiguration manager, located somewhere 
in the network, is interacting with the equipment 
reconfiguration manager (EqRM), which supervises all 
equipment related reconfigurations. The Configuration 
Management Module (CMM) within EqRM takes care of 
physical layer related reconfiguration issues. It is 
independent from the underlying physical layer platform or 
its implementation and interacts with a Configuration 
Control Module (CCM). Hiding the implementation details 
of the reconfiguration capabilities of the hardware 
resources [3], the CCM controls the physical layer (PHY) 
reconfiguration. Reconfiguration of the equipment’s 
system functionality inside the physical layer will comprise 
a set of reconfigurable, programmable or parameterizable 
hardware/software resources available for data and control 
processing. In particular, the CCM is responsible for 
controlling and supervising the reconfiguration process as 
well as for defining fallback modes, in case of mal 
function. Additionally, it shall provide download capability 
for complete or partial update of configuration data. 
 
B. Physical Layer Architecture 
 
A physical layer architecture has to be developed, which 
meets the functional requirements derived from different 
scenarios and standards. It has to provide the environment 
which is needed to implement the functionality required by 
the CCM.  
The physical layer architecture of the reconfigurable 
modem is shown in more detail in Figure 2: A set of 
functional elements (RF-frontend, communication, digital 
processing) forms the upper layer of a system of different 
levels of hardware abstraction. 
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Figure 2: Physical Layer Architecture. 
 
At this level, functional elements appear as reconfigurable 
modules implementing a specific functionality (e.g. Down-
Conversion, Modulation, Decoding). The CCM can 
configure such modules and also manage the 
communication resources between the processing elements 
to guarantee the required functionality and maintain the 
required data throughput.  
Downloading of object code to programmable resources 
and bit-streams to reconfigurable logic as well as setting 
parameters of hardware accelerators has to be performed at 
a lower level of abstraction supported by low level device 
drivers in order to comply with the principle of hardware 
abstraction and thus platform independence.  
Handling these levels of abstraction and temporal 
scheduling of hardware and software resources requires 
appropriate operational software. The challenge of such a 
software system is to manage the processes which are 
required to maintain the reconfigurability of the system 
and at the same time to guarantee the functionality of the 
underlying data processing system. 
The operational software module (OSM) provides a logical 
view of the execution environment for the higher layers. 
The execution platform will most likely consist of a mix of 
general purpose processors (GPPs), digital signal 
processors (DSPs), field programmable gate arrays 
(FPGAs), and parameterizable hardware accelerators 
which are connected by a variety of interconnects. While 
the CCM manages these resources at a logical level, the 
OSM provides the primitives to perform these tasks. 
Operational software incorporates real-time operating 
systems (RTOS) for various programmable processing 
elements (PPEs) to allocate and manage the processing 
resources (e.g. execution time, priority and scheduling 
policy) for each task that needs to be scheduled on them. 
Likewise methods for managing the associated memory 
resources will be provided. 
Communication between various processing elements is 
another critical resource (connectivity, bandwidth, etc.) 
that the CCM will manage. The OSM will provide the 
logical interfaces to configure and manage these resources. 
Processing elements will be allocated to various tasks in a 

flexible manner by means of a distributed middleware. 
Supporting the run-time reconfiguration is a critical 
function of the OSM. Loading and unloading of software 
modules on the PPEs will also be possible. The OSM will 
incorporate appropriate loaders for the target PPEs, while 
providing a common logical interface to the CCM. 
Similarly the OSM will also include drivers and loaders to 
load and configure various reconfigurable and 
parameterizable hardware resources. Other services for 
support of development and execution such as non-volatile 
storage, file system, logging service, diagnostics etc. will 
additionally be provided. 
 

III. CONFIGURATION CONTROL 
 
The CCM is responsible for configuring and scheduling 
resources in the physical layer to fulfill system 
configuration requests from the CMM. 
 
A. CCM Requirements 
 
The key requirements for the CCM can be defined as: 
1. Platform independent: The functionality of the CCM 
will be independent of the hardware resources it controls. 
This ensures design reuse across different nodes (i.e. 
Terminal, Basestation or Access Point) and scalability as 
the underlying hardware evolves. 
2. Dynamic downloading of Data Processing Modules: 
The CCM directly manages the configuration at the 
module level. But by also supporting the dynamic creation 
of data processing modules the configuration granularity is 
reduced to a much lower level. 
3. Power conscious: Reconfigurability implies increased 
power consumption. One of the tasks of the CCM is to 
reduce this overhead to a minimum. 
4. Standard interface to the CMM: By supporting a 
platform independent interface the CCM hides the 
underlying hardware from higher layers in the 
configuration plane. 
5. Seamless and partial re-configuration: The transition 
from one configuration to another should be done in a 
precise and time accurate fashion to avoid loss of 
functionality to sections unrelated to the change. 
6. Reliable, predictable and secure configuration: The 
CCM must guarantee the correct functionality under hard 
real-time constraints and has to verify the consistency of 
configuration. 
7. Configuration and control of all stages in the receive 
and transmit path: RF and AFE components can be 
configured or switched on or off as required. Sample 
clocks and time bases will also be configured. In addition 
to the baseband digital signal processing the CCM will also 
manage signal processing applications such as vocoders 
and video codec's.  
 
B. CCM Functionality 
 
As noted above the CCM is responsible for reconfiguring 
the underlying physical layer in terms of: 



• Reconfiguration of the hardware resources 
• Reconfiguration of the interconnection scheme 
• Temporal & spatial scheduling of a configuration 
 

In order to maintain these functions, several tasks have to 
be implemented in the CCM which can be logically 
partitioned into the following classes, which are also 
depicted in Figure 3. 
 

• Authentication & integrity check of configuration 
• Negotiation with CMM 
• Memory management 
• HW resource management & spatial scheduling 
• Monitoring of environment 

- Statistics (used up resources, status information) 
- Metrics (SNR, multi path, interference) 

• Maintenance of the databases containing 
- Execution metrics 
- Standards and algorithms 
- Configuration parameters 
- Configuration data 
- SW modules (ISA code) 
- Device driver 
- Gathered statistics & metrics 
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Figure 3: CCM Functional View. 
 
By integrating these processes the CCM should be able to 
fulfill the requirements and to ensure proper operation of 
the underlying hardware resources. 
 

IV. RECONFIGURABLE HARDWARE 
RESOURCES 

 
Reconfiguration for E2R equipment comprises partitioning 
and configuration of functional and hardware layer. 
Commonalities and similarities of functional building 
blocks (FBB) will be identified and then used for 
partitioning FBBs into common classes. Reconfiguration 
parameters will be extracted for these classes in order to 
reduce time and resource requirements for the re-
configuration process. The identified classes will be 
mapped to corresponding classes of processing elements 
on the hardware layer. 
 
 

A. HW Resource Configuration 
 
The reconfigurable HW architecture of the physical layer 
consists of a set of hardware resources (analog and digital) 
which are configurable for supporting all required digital 
baseband and RF front-end functions. In the process of 
reconfiguration, these hardware resources are connected, 
monitored and controlled by the CCM. For each hardware 
component the CCM needs information about data, control 
and reconfiguration interfaces. Among these are: 
 

• Reconfiguration time 
• Reconfiguration parameters (range) 
• Amount of reconfiguration data 
• Partial vs. full reconfiguration 
• Reference for execution time 
• Reference for power consumption 
 

The processing elements can be constructed from a set of 
programmable or parameterizable hardware building 
blocks. Configurable processing elements considered for 
this platform are micro-controllers, GPPs, DSPs, HW 
accelerators, applications specific DSPs (ASDSPs), 
FPGAs, digital and analog parameterizable ASICs. Since 
type and level of reconfigurability of hardware resources 
varies from the truly general-purpose components such as 
Digital Signal Processors or Field Programmable Gate 
Arrays to dedicated components such as programmable 
oscillators there is a need for a generic view of hardware 
resources. Therefore, hardware resources are modeled in a 
uniform abstract way providing required information to the 
CCM and hiding the implementation specific details. In 
addition, this approach enables a seamless integration of a 
new type of hardware into the architecture. 
 
B. Analog Front-End Considerations 
 
The difficulties of an SDR compliant RF front-end are 
quite different to the challenges arising in the digital 
baseband processing. The latter is mainly limited by 
complexity, which makes an evolutionary path that 
gradually exploits future performance increases of CMOS 
based digital circuitry, possible. This is significantly 
different to the situation of RF front-ends, which are 
primarily bounded by physical limitations of RF devices. 
Those generally known RF degradations encompass device 
nonlinearities, dynamic range limitations, signal 
degradations due to device mismatches and the like. A 
possible way to overcome these analog impairments is 
based on digital signal processing functions locally 
implemented in the RF transceiver front-end. One example 
of such a digital based analog impairment correction could 
be a programmable FIR filter for the compensation of in-
channel amplitude/phase ripples, which are mainly caused 
by of the analog channel selection filter. This approach 
will rely of course on the availability of an advanced 
CMOS process options for the semiconductor process 
under consideration. 
 



To further maximize the flexibility of the foreseen RF 
concept, a digital control and data interface should be 
implemented between the front-end and the digital base 
band. Since excessive data rates are expected at the 
output/input of the ADCs/DACs, a digital front-end is 
needed to decimate/interpolate the signals to moderate 
(low multiples of the symbol/chip rate) levels. This will 
also necessitate the development of fractional sample rate 
converters, to connect the sample rate of the different 
standards (e.g. the UMTS chip rate of 3.84 Mcps) with a 
physical clock rate that is common for all standards. 
For implementation of re-configurable RF front ends 
architectures with a high degree of flexibility are preferred. 
Thus, the primary architectures of choice are the direct-
down conversion receiver and the direct-up conversion 
transmitter because the amount of external, fixed 
frequency RF components is minimized and the external 
filtering at one or even multiple IF frequencies that is 
inherent to architectures with multiple frequency 
conversions can be avoided. 
 
C. Digital Baseband Hardware Architectures 
 
In order to derive abstract models for reconfigurable 
hardware resources, different levels of abstraction with 
varying degree of granularity (e.g. Instruction Set Level, 
Register-Transfer Level, Gate Level, Circuit Level) have to 
be considered. Each model can be described in the 
behavioral, structural or physical domain. The design of 
reconfigurable hardware architectures has to take into 
account flexibility (i.e. software programmable), high 
computational performance (i.e. high data rate, low 
latency), as well as low power consumption for handheld 
devices. Figure 4 shows a reconfigurable digital baseband 
processing architecture controlled by the CCM. 
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Figure 4: Reconfigurable Baseband HW Architecture. 
 
C.1 Application Specific DSPs 
 
Algorithm specific hardware accelerators can be used to 
enhance the baseband digital signal processing capabilities. 
But they offer only a limited degree of reconfigurability. 
Fully programmable DSPs while providing a high degree 
of flexibility often do not match the required signal 
processing requirements. Software programmable and thus 
reconfigurable application specific DSPs (ASDSPs) have a 
far better signal processing performance and power 
consumption than general purpose DSPs. They fill the gap 
between application specific HW accelerators and general 

purpose DSPs. The following design paradigms will be 
considered for developing ASDSPs which can be 
configured by the CCM: 
 
Application Classes: A generalization of base-band 
processing algorithms for different air interfaces will lead 
to a set of basic algorithm classes for which a common 
software platform as well as a common hardware platform 
can be designed. 
Parameterizable Basic Architectures (PBA): These basic 
architectures enable a fast adaptation of the baseband 
processing platform to a given application. One PBA must 
be found for each algorithm class. Among those are the 
signal processing machine (SPM) and the control 
processing machine (CPM). 
Parameterizable Instruction Set Architecture (ISA): The 
main characteristic of this interface between programmer 
and hardware is to map the scalability of the hardware 
platform to the command complexity. 
Parameterizable Design and Programming Tools: These 
are tools like assemblers, debuggers, simulators etc. 
Similar to the ISA, the tools must be easily adaptable to the 
different architecture alternatives. 
 
C.2 Algorithm Specific Accelerators 
 
A hardware accelerator is a block which is added into the 
system architecture in order to speed up signal processing 
and add new functionality to the system. Co-Processors 
and to some extend ASDSPs are tightly coupled to the 
µP/DSP. They provide an extension to the instruction set 
and potentially affect the DSP/µP pipeline. Autonomous 
accelerators are only loosely coupled to the DSP/µP. They 
provide a separate instruction set and operate independent 
from the µP/DSP. Algorithm specific accelerators are 
considered for processing of an algorithm/application, 
where only a limited set of more or less complex 
operations is needed. In contrast to a DSP, this kind of 
accelerator is therefore optimized for a certain class of 
algorithm, implementing a limited instruction set. 
Similarities and differences between the certain 
standards/functions have to be identified and 
parameterized. The basic algorithms, underlying the 
systems, are evaluated and classes of algorithms with their 
corresponding parameter sets will be identified. They will 
be the basis for the accelerator design. Re-configuration 
capabilities will be provided only to a limited extent. The 
accelerator concept allows a modular and scalable system 
architecture with independent, decentralized processing 
components. 
 

V. SCENARIOS 
 
The roles of the entities involved in the reconfiguration 
process of the physical layer, as well as their interactions, 
are illustrated here through two examples. The first one 
relies on a basic reconfiguration scenario relating to intra-
standard performance enhancement, which is considered as 
one of the first achievable case-studies in the E2R 



roadmap. The second one tackles one of the most 
challenging goals of the project: reconfiguration for inter-
standard handover. 
 
A. Intra-standard performance enhancement 
 
This scenario only involves the user equipment (UE) and, 
to a certain extent, part of the network. It consists in 
downloading a new piece of code (or patch) to either 
replace a bugged algorithm of the modem or improve its 
performance [4]. The reconfiguration process can be 
divided into the following consecutive steps: 
1. A dialog must take place between the UE and a remote 
network reconfiguration manager (NRM) so that the UE 
can be informed that a new patch is available for 
download. 
2. The NRM then selects the appropriate patch and sends it 
to the UE as a classic payload through a normal 
communication standard that supports reliable data 
transfers. 
3. The UE recognizes the payload as configuration data 
and installs it in its local configuration database; it is now 
ready to use the updated version of the code. 
4. Even though the patch is downloaded while on-line, no 
specific real-time constraints need to be met and actual 
reconfiguring may happen off-line. 
The CCM must support the following operations to enable 
such a reconfiguration scenario: It aware of its own 
hardware and software constituents and keeps track of the 
various algorithm versions that it possesses in 
configuration memory. It provides the NRM with all this 
information in order to determine whether updates are 
available and which patch should be sent. It monitors the 
downloading of the patch in a secure and reliable manner. 
It installs the patch into its configuration memory. The new 
version of the algorithm is now ready for use, and the 
previous version is kept for rollback capability. 
 
B. On-line mode switch for inter-standard handover 
 
This end-to-end reconfiguration scenario involves the 
whole communication chain, but is addressed here from 
the equipment reconfiguration point of view: Passing 
seamlessly from one standard to another at run-time, the 
new standard being instantiated by reconfiguring the 
modem and the upper layers while the former standard is 
still running. In this case, it is assumed that the UE already 
has all the required configuration data (no need to 
download it first). The reconfiguration process can be 
divided into the following consecutive steps: 
1. A negotiation takes place between the NRM, which 
takes the decision to perform a handover, and the UE to 
determine if the reconfiguration is achievable, and under 
which conditions. 
2. The UE is reconfigured to support the new standard (all 
layers are concerned). This must happen while the former 
standard is still running and without interfering with it. 
Particularly, the reconfiguration process must not in any 

case prevent the real-time constraints of the former 
standard to be met. 
3. A new communication link is opened based on the new 
standard. The two links must co-exist for a certain time, 
long enough for the new standard to be ready to take over 
the communication. This phase requires a tight 
synchronization with the network. 
4. Once the handover has been done, the former link is shut 
down without interfering with the new one. 
Here, the CCM must support the following operations to 
enable such a reconfiguration scenario: Knowing which 
resources are allocated to the former standard and which 
are available for instantiating the new one, it is able to 
accept or decline the reconfiguration requested by the 
NRM. After dynamically allocating the required resources, 
it will instantiate the new standard by reconfiguring the 
modem. This must be done without interfering with the 
former standard. After the handover has been done, the 
CCM frees the resources that were allocated to the former 
standard and makes them available for further reuse. 
 

V I. CONCLUSIONS 
 
Functional elements and their interactions in an end-to-end 
reconfigurable equipment have been addressed at different 
levels of abstraction. Particular emphasis has been placed 
on the configuration control and hardware resources. Many 
open issues have been identified which will be subject to 
further investigation. 
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