
Functional Elements in E2E Reconfigurable Equipment

M. Bronzel, H. Seidel, TU Dresden, Dresden, Germany
J. Brakensiek, D. Lenz, Nokia Research Center, Bochum, Germany

A. Bisiaux, C. Moy, A. Kountouris, Mitsubishi Electric ITE-TCL, Rennes, France
M. Halimic, PMDL, UK, C. Dolwin, Toshiba Research Europe Ltd, Bristol, UK

S. Walter, Alcatel SEL, Stuttgart, Germany, S.K. Pilakkat, I2R, Singapoore
L. Maurer, DICE, Linz, Austria, T. Burger, ACP, Zollikon, Switzerland

email: bronzel@ifn.et.tu-dresden.de

ABSTRACT

Reconfigurable equipment within a Software Defined
Radio approach will be addressed on different levels: the
control level, the resource level, and the operational level.
A reconfiguration architecture and functionality will be
introduced that offers interfaces to management entities
and controls the internal components to select, negotiate
and perform the appropriate reconfiguration actions. The
reconfigurable equipment will make it possible to optimize
resources for dedicated air interfaces and to update and
upgrade existing equipment with new features, functions
and procedures.

I. INTRODUCTION

Equipment for efficient and reliable operation in an End-
to-End Reconfigurability context as considered in the
E2R [1] project, needs a well-defined framework for the
local equipment reconfiguration management. Two
complementary aspects of the configuration management
issue are considered here: functionality and architecture.
Both depend on the requirements placed upon the
reconfiguration process, which are dictated by the different
usage scenarios.

II. RECONFIGURABLE EQUIPMENT

A. Management and Control Architecture

Reconfiguration inside a terminal, base station or access
point in an end-to-end manner is affecting all layers from
the physical layer up to the network and application layer.
The overall picture of reconfigurable equipment (i.e.
terminal, basestation or access point) architecture is shown
in Figure 1. A distributed hierarchical configuration
management approach is adopted. It is distributed in the
sense that in an end-to-end reconfigurability context many
physically or logically distributed entities are required to
collaborate. It is hierarchical since a configuration can
have a different representation to different layers of
abstraction within the reconfigurable equipment or to
entities outside the equipment (e.g. a configuration
supporting GSM or UMTS). This representation becomes
more and more detailed inside as we approach the real
hardware that needs to be configured [2].

Sy
st

em
 S

of
tw

ar
e

M
id

dl
ew

ar
e,

 R
TO

S
, d

ev
ic

e
dr

iv
er

s,
 e

tc
.

Distributed Distributed
Reconfiguration Reconfiguration
Management Management
FunctionalityFunctionality

Add-on
Component

#1

Add-on
Component

#2

Add-on
Component

#n

Application Framework

Protocol
Module

#1

Protocol
Module

#2

Protocol
Module

#n

Re-configurable Protocol Stack Framework

Config.
Execution

Module
#1

Config.
Execution

Module
#2

Config.
Execution

Module
#n

Re-configurable Hardware resource abstraction

Re-configurable protocol stack

Re-configurable modem

component/module
reconfiguration interface

App. layer
Reconfiguration

Controller

Protocol
Reconfiguration

Controller

Modem
Reconfiguration

Controller

Application Layer

EquipmentEquipment
ReconfigurationReconfiguration

ManagerManager

Network Side
Reconfiguration
Entities
Protocol & signaling
policies, decision
making accounting,
etc.

Sy
st

em
 S

of
tw

ar
e

M
id

dl
ew

ar
e,

 R
TO

S
, d

ev
ic

e
dr

iv
er

s,
 e

tc
.

Distributed Distributed
Reconfiguration Reconfiguration
Management Management
FunctionalityFunctionality

Add-on
Component

#1

Add-on
Component

#2

Add-on
Component

#n

Application Framework

Protocol
Module

#1

Protocol
Module

#2

Protocol
Module

#n

Re-configurable Protocol Stack Framework

Config.
Execution

Module
#1

Config.
Execution

Module
#2

Config.
Execution

Module
#n

Re-configurable Hardware resource abstraction

Re-configurable protocol stack

Re-configurable modem

component/module
reconfiguration interface
component/module
reconfiguration interface

App. layer
Reconfiguration

Controller

Protocol
Reconfiguration

Controller

Modem
Reconfiguration

Controller

Application Layer

EquipmentEquipment
ReconfigurationReconfiguration

ManagerManager

Network Side
Reconfiguration
Entities
Protocol & signaling
policies, decision
making accounting,
etc.

Figure 1: Overall reconfigurable equipment architecture.

The network reconfiguration manager, located somewhere
in the network, is interacting with the equipment
reconfiguration manager (EqRM), which supervises all
equipment related reconfigurations. The Configuration
Management Module (CMM) within EqRM takes care of
physical layer related reconfiguration issues. It is
independent from the underlying physical layer platform or
its implementation and interacts with a Configuration
Control Module (CCM). Hiding the implementation details
of the reconfiguration capabilities of the hardware
resources [3], the CCM controls the physical layer (PHY)
reconfiguration. Reconfiguration of the equipment’s
system functionality inside the physical layer will comprise
a set of reconfigurable, programmable or parameterizable
hardware/software resources available for data and control
processing. In particular, the CCM is responsible for
controlling and supervising the reconfiguration process as
well as for defining fallback modes, in case of mal
function. Additionally, it shall provide download capability
for complete or partial update of configuration data.

B. Physical Layer Architecture

A physical layer architecture has to be developed, which
meets the functional requirements derived from different
scenarios and standards. It has to provide the environment
which is needed to implement the functionality required by
the CCM.
The physical layer architecture of the reconfigurable
modem is shown in more detail in Figure 2: A set of
functional elements (RF-frontend, communication, digital
processing) forms the upper layer of a system of different
levels of hardware abstraction.

Configuration
Management Module

Configuration
Control Module

Library Functions Configuration
Data Structure

C
M

M
 -

C
C

M

in
te

rfa
ce

Processing
Element

Hardware Resources

R
e

C
onfiguration

Real-Time Control
Information

Executables

Operational Software

S
chedule

Configuration
Strategies

Scheduling

Digital
Processing

Element

Communication
ElementCommunication

Element

RF and
Front End
elements

RF and
Front End
elements

Examples: Turbo
accelerators, Rake
accelerators, FFT
engine, DSP,
Reconfigurable logic

Examples: Data
bus, Network On
chip, Crossbar,
Switch, DMA,
Shared Memory,
Dual Port
Memory

Examples: ADC,
DAC, Mixer,
LNA, Filters,
AGC,
Synthesiser

Figure 2: Physical Layer Architecture.

At this level, functional elements appear as reconfigurable
modules implementing a specific functionality (e.g. Down-
Conversion, Modulation, Decoding). The CCM can
configure such modules and also manage the
communication resources between the processing elements
to guarantee the required functionality and maintain the
required data throughput.
Downloading of object code to programmable resources
and bit-streams to reconfigurable logic as well as setting
parameters of hardware accelerators has to be performed at
a lower level of abstraction supported by low level device
drivers in order to comply with the principle of hardware
abstraction and thus platform independence.
Handling these levels of abstraction and temporal
scheduling of hardware and software resources requires
appropriate operational software. The challenge of such a
software system is to manage the processes which are
required to maintain the reconfigurability of the system
and at the same time to guarantee the functionality of the
underlying data processing system.
The operational software module (OSM) provides a logical
view of the execution environment for the higher layers.
The execution platform will most likely consist of a mix of
general purpose processors (GPPs), digital signal
processors (DSPs), field programmable gate arrays
(FPGAs), and parameterizable hardware accelerators
which are connected by a variety of interconnects. While
the CCM manages these resources at a logical level, the
OSM provides the primitives to perform these tasks.
Operational software incorporates real-time operating
systems (RTOS) for various programmable processing
elements (PPEs) to allocate and manage the processing
resources (e.g. execution time, priority and scheduling
policy) for each task that needs to be scheduled on them.
Likewise methods for managing the associated memory
resources will be provided.
Communication between various processing elements is
another critical resource (connectivity, bandwidth, etc.)
that the CCM will manage. The OSM will provide the
logical interfaces to configure and manage these resources.
Processing elements will be allocated to various tasks in a

flexible manner by means of a distributed middleware.
Supporting the run-time reconfiguration is a critical
function of the OSM. Loading and unloading of software
modules on the PPEs will also be possible. The OSM will
incorporate appropriate loaders for the target PPEs, while
providing a common logical interface to the CCM.
Similarly the OSM will also include drivers and loaders to
load and configure various reconfigurable and
parameterizable hardware resources. Other services for
support of development and execution such as non-volatile
storage, file system, logging service, diagnostics etc. will
additionally be provided.

III. CONFIGURATION CONTROL

The CCM is responsible for configuring and scheduling
resources in the physical layer to fulfill system
configuration requests from the CMM.

A. CCM Requirements

The key requirements for the CCM can be defined as:
1. Platform independent: The functionality of the CCM
will be independent of the hardware resources it controls.
This ensures design reuse across different nodes (i.e.
Terminal, Basestation or Access Point) and scalability as
the underlying hardware evolves.
2. Dynamic downloading of Data Processing Modules:
The CCM directly manages the configuration at the
module level. But by also supporting the dynamic creation
of data processing modules the configuration granularity is
reduced to a much lower level.
3. Power conscious: Reconfigurability implies increased
power consumption. One of the tasks of the CCM is to
reduce this overhead to a minimum.
4. Standard interface to the CMM: By supporting a
platform independent interface the CCM hides the
underlying hardware from higher layers in the
configuration plane.
5. Seamless and partial re-configuration: The transition
from one configuration to another should be done in a
precise and time accurate fashion to avoid loss of
functionality to sections unrelated to the change.
6. Reliable, predictable and secure configuration: The
CCM must guarantee the correct functionality under hard
real-time constraints and has to verify the consistency of
configuration.
7. Configuration and control of all stages in the receive
and transmit path: RF and AFE components can be
configured or switched on or off as required. Sample
clocks and time bases will also be configured. In addition
to the baseband digital signal processing the CCM will also
manage signal processing applications such as vocoders
and video codec's.

B. CCM Functionality

As noted above the CCM is responsible for reconfiguring
the underlying physical layer in terms of:

• Reconfiguration of the hardware resources
• Reconfiguration of the interconnection scheme
• Temporal & spatial scheduling of a configuration

In order to maintain these functions, several tasks have to
be implemented in the CCM which can be logically
partitioned into the following classes, which are also
depicted in Figure 3.

• Authentication & integrity check of configuration
• Negotiation with CMM
• Memory management
• HW resource management & spatial scheduling
• Monitoring of environment

- Statistics (used up resources, status information)
- Metrics (SNR, multi path, interference)

• Maintenance of the databases containing
- Execution metrics
- Standards and algorithms
- Configuration parameters
- Configuration data
- SW modules (ISA code)
- Device driver
- Gathered statistics & metrics

Physical Resources

Configuration Management Module (CMM)

Configuration
control Temporal

scheduling Communication
control Status

control Measurement
control

config
data ISA

code config
params

execution
metrics standards

algorithms device
driver

statistics metrics

Database
Memory

management

Negotiation
Authentication / Integrity check

Physical
resource

management

-
spatial

scheduling

C
C
M

Figure 3: CCM Functional View.

By integrating these processes the CCM should be able to
fulfill the requirements and to ensure proper operation of
the underlying hardware resources.

IV. RECONFIGURABLE HARDWARE
RESOURCES

Reconfiguration for E2R equipment comprises partitioning
and configuration of functional and hardware layer.
Commonalities and similarities of functional building
blocks (FBB) will be identified and then used for
partitioning FBBs into common classes. Reconfiguration
parameters will be extracted for these classes in order to
reduce time and resource requirements for the re-
configuration process. The identified classes will be
mapped to corresponding classes of processing elements
on the hardware layer.

A. HW Resource Configuration

The reconfigurable HW architecture of the physical layer
consists of a set of hardware resources (analog and digital)
which are configurable for supporting all required digital
baseband and RF front-end functions. In the process of
reconfiguration, these hardware resources are connected,
monitored and controlled by the CCM. For each hardware
component the CCM needs information about data, control
and reconfiguration interfaces. Among these are:

• Reconfiguration time
• Reconfiguration parameters (range)
• Amount of reconfiguration data
• Partial vs. full reconfiguration
• Reference for execution time
• Reference for power consumption

The processing elements can be constructed from a set of
programmable or parameterizable hardware building
blocks. Configurable processing elements considered for
this platform are micro-controllers, GPPs, DSPs, HW
accelerators, applications specific DSPs (ASDSPs),
FPGAs, digital and analog parameterizable ASICs. Since
type and level of reconfigurability of hardware resources
varies from the truly general-purpose components such as
Digital Signal Processors or Field Programmable Gate
Arrays to dedicated components such as programmable
oscillators there is a need for a generic view of hardware
resources. Therefore, hardware resources are modeled in a
uniform abstract way providing required information to the
CCM and hiding the implementation specific details. In
addition, this approach enables a seamless integration of a
new type of hardware into the architecture.

B. Analog Front-End Considerations

The difficulties of an SDR compliant RF front-end are
quite different to the challenges arising in the digital
baseband processing. The latter is mainly limited by
complexity, which makes an evolutionary path that
gradually exploits future performance increases of CMOS
based digital circuitry, possible. This is significantly
different to the situation of RF front-ends, which are
primarily bounded by physical limitations of RF devices.
Those generally known RF degradations encompass device
nonlinearities, dynamic range limitations, signal
degradations due to device mismatches and the like. A
possible way to overcome these analog impairments is
based on digital signal processing functions locally
implemented in the RF transceiver front-end. One example
of such a digital based analog impairment correction could
be a programmable FIR filter for the compensation of in-
channel amplitude/phase ripples, which are mainly caused
by of the analog channel selection filter. This approach
will rely of course on the availability of an advanced
CMOS process options for the semiconductor process
under consideration.

To further maximize the flexibility of the foreseen RF
concept, a digital control and data interface should be
implemented between the front-end and the digital base
band. Since excessive data rates are expected at the
output/input of the ADCs/DACs, a digital front-end is
needed to decimate/interpolate the signals to moderate
(low multiples of the symbol/chip rate) levels. This will
also necessitate the development of fractional sample rate
converters, to connect the sample rate of the different
standards (e.g. the UMTS chip rate of 3.84 Mcps) with a
physical clock rate that is common for all standards.
For implementation of re-configurable RF front ends
architectures with a high degree of flexibility are preferred.
Thus, the primary architectures of choice are the direct-
down conversion receiver and the direct-up conversion
transmitter because the amount of external, fixed
frequency RF components is minimized and the external
filtering at one or even multiple IF frequencies that is
inherent to architectures with multiple frequency
conversions can be avoided.

C. Digital Baseband Hardware Architectures

In order to derive abstract models for reconfigurable
hardware resources, different levels of abstraction with
varying degree of granularity (e.g. Instruction Set Level,
Register-Transfer Level, Gate Level, Circuit Level) have to
be considered. Each model can be described in the
behavioral, structural or physical domain. The design of
reconfigurable hardware architectures has to take into
account flexibility (i.e. software programmable), high
computational performance (i.e. high data rate, low
latency), as well as low power consumption for handheld
devices. Figure 4 shows a reconfigurable digital baseband
processing architecture controlled by the CCM.

DSP
Co-

ProzessorASDSP

C
M
M

C
C
M

Communication Fabric

Acc.
Acc.Co-

Prozessor
ASDSP

DSP
microP Acc.

Memory

Figure 4: Reconfigurable Baseband HW Architecture.

C.1 Application Specific DSPs

Algorithm specific hardware accelerators can be used to
enhance the baseband digital signal processing capabilities.
But they offer only a limited degree of reconfigurability.
Fully programmable DSPs while providing a high degree
of flexibility often do not match the required signal
processing requirements. Software programmable and thus
reconfigurable application specific DSPs (ASDSPs) have a
far better signal processing performance and power
consumption than general purpose DSPs. They fill the gap
between application specific HW accelerators and general

purpose DSPs. The following design paradigms will be
considered for developing ASDSPs which can be
configured by the CCM:

Application Classes: A generalization of base-band
processing algorithms for different air interfaces will lead
to a set of basic algorithm classes for which a common
software platform as well as a common hardware platform
can be designed.
Parameterizable Basic Architectures (PBA): These basic
architectures enable a fast adaptation of the baseband
processing platform to a given application. One PBA must
be found for each algorithm class. Among those are the
signal processing machine (SPM) and the control
processing machine (CPM).
Parameterizable Instruction Set Architecture (ISA): The
main characteristic of this interface between programmer
and hardware is to map the scalability of the hardware
platform to the command complexity.
Parameterizable Design and Programming Tools: These
are tools like assemblers, debuggers, simulators etc.
Similar to the ISA, the tools must be easily adaptable to the
different architecture alternatives.

C.2 Algorithm Specific Accelerators

A hardware accelerator is a block which is added into the
system architecture in order to speed up signal processing
and add new functionality to the system. Co-Processors
and to some extend ASDSPs are tightly coupled to the
µP/DSP. They provide an extension to the instruction set
and potentially affect the DSP/µP pipeline. Autonomous
accelerators are only loosely coupled to the DSP/µP. They
provide a separate instruction set and operate independent
from the µP/DSP. Algorithm specific accelerators are
considered for processing of an algorithm/application,
where only a limited set of more or less complex
operations is needed. In contrast to a DSP, this kind of
accelerator is therefore optimized for a certain class of
algorithm, implementing a limited instruction set.
Similarities and differences between the certain
standards/functions have to be identified and
parameterized. The basic algorithms, underlying the
systems, are evaluated and classes of algorithms with their
corresponding parameter sets will be identified. They will
be the basis for the accelerator design. Re-configuration
capabilities will be provided only to a limited extent. The
accelerator concept allows a modular and scalable system
architecture with independent, decentralized processing
components.

V. SCENARIOS

The roles of the entities involved in the reconfiguration
process of the physical layer, as well as their interactions,
are illustrated here through two examples. The first one
relies on a basic reconfiguration scenario relating to intra-
standard performance enhancement, which is considered as
one of the first achievable case-studies in the E2R

roadmap. The second one tackles one of the most
challenging goals of the project: reconfiguration for inter-
standard handover.

A. Intra-standard performance enhancement

This scenario only involves the user equipment (UE) and,
to a certain extent, part of the network. It consists in
downloading a new piece of code (or patch) to either
replace a bugged algorithm of the modem or improve its
performance [4]. The reconfiguration process can be
divided into the following consecutive steps:
1. A dialog must take place between the UE and a remote
network reconfiguration manager (NRM) so that the UE
can be informed that a new patch is available for
download.
2. The NRM then selects the appropriate patch and sends it
to the UE as a classic payload through a normal
communication standard that supports reliable data
transfers.
3. The UE recognizes the payload as configuration data
and installs it in its local configuration database; it is now
ready to use the updated version of the code.
4. Even though the patch is downloaded while on-line, no
specific real-time constraints need to be met and actual
reconfiguring may happen off-line.
The CCM must support the following operations to enable
such a reconfiguration scenario: It aware of its own
hardware and software constituents and keeps track of the
various algorithm versions that it possesses in
configuration memory. It provides the NRM with all this
information in order to determine whether updates are
available and which patch should be sent. It monitors the
downloading of the patch in a secure and reliable manner.
It installs the patch into its configuration memory. The new
version of the algorithm is now ready for use, and the
previous version is kept for rollback capability.

B. On-line mode switch for inter-standard handover

This end-to-end reconfiguration scenario involves the
whole communication chain, but is addressed here from
the equipment reconfiguration point of view: Passing
seamlessly from one standard to another at run-time, the
new standard being instantiated by reconfiguring the
modem and the upper layers while the former standard is
still running. In this case, it is assumed that the UE already
has all the required configuration data (no need to
download it first). The reconfiguration process can be
divided into the following consecutive steps:
1. A negotiation takes place between the NRM, which
takes the decision to perform a handover, and the UE to
determine if the reconfiguration is achievable, and under
which conditions.
2. The UE is reconfigured to support the new standard (all
layers are concerned). This must happen while the former
standard is still running and without interfering with it.
Particularly, the reconfiguration process must not in any

case prevent the real-time constraints of the former
standard to be met.
3. A new communication link is opened based on the new
standard. The two links must co-exist for a certain time,
long enough for the new standard to be ready to take over
the communication. This phase requires a tight
synchronization with the network.
4. Once the handover has been done, the former link is shut
down without interfering with the new one.
Here, the CCM must support the following operations to
enable such a reconfiguration scenario: Knowing which
resources are allocated to the former standard and which
are available for instantiating the new one, it is able to
accept or decline the reconfiguration requested by the
NRM. After dynamically allocating the required resources,
it will instantiate the new standard by reconfiguring the
modem. This must be done without interfering with the
former standard. After the handover has been done, the
CCM frees the resources that were allocated to the former
standard and makes them available for further reuse.

V I. CONCLUSIONS

Functional elements and their interactions in an end-to-end
reconfigurable equipment have been addressed at different
levels of abstraction. Particular emphasis has been placed
on the configuration control and hardware resources. Many
open issues have been identified which will be subject to
further investigation.

ACKNOWLEDGEMENTS

This work has been performed within the framework of the
EU funded project E2R. The authors would like to
acknowledge the contributions of their colleagues from the
E2R consortium.

REFERENCES

[1] End-to-End Reconfigurability (E²R), IST-2003-

507995 E²R, http://www.e2r.motlabs.com.
[2] J. Brakensiek, D. Lenz, T. Wiebke, S. Gultchev, R.

Tafazolli, A. Bisiaux, C. Moy, A. Kountouris, M.
Halimic, C. Dolwin: Management and Controlling
Architecture in E2E Reconfigurable Terminals. 3rd
Karlsruhe Workshop on Software Radio, Karlsruhe,
March 2004.

[3] J. Brakensiek, M. Darianian, S. Walter, C. Dolwin,
M. Halimic, L. Maurer, A. Kountaris: Reconfigurable
Physical Layer Architecture supporting End to End
Reconfiguration, WWRF Meeting New York,
October 2003.

[4] C. Moy, A. Kountouris, A. Bisiaux, HW and SW
Architectures for Over-The-Air Dynamic
Reconfiguration by Software Download, SDR
Workshop of the IEEE Radio and Wireless
Conference, Boston, USA, Aug. 2003.

