
UML PROFILE FOR WAVEFORM SPS ABSTRACTION

Christophe MOY – Ph.D., Mickaël RAULET
(Mitsubishi Electric ITE-TCL, Rennes, France - <moy, raulet>@tcl.ite.mee.com)

Samuel ROUXEL, Jean-Philippe DIGUET – Ph.D., Guy GOGNIAT – Ph.D.
(Lester, Université de Bretagne Sud, Lorient, France - <samuel.rouxel, jean-philippe.diguet, guy.gogniat>@univ-ubs.fr)

Philippe DESFRAY, Nicolas BULTEAU
(Softeam, Rennes, France – <philippe.desfray, nicolas.bulteau>@softeam.fr)

Jean-Etienne GOUBARD, Yann DENEF
(Thales Communications, Colombes, France - <jean-etienne.goubard, yann.denef>@fr.thalesgroup.com)

ABSTRACT

This paper proposes to address the issue of a priori
verifying, at the architectural design phase of both software
and hardware, the adequate operation of a software radio
protocol stack application on a hardware platform in terms
of real-time execution, power consumption, memory size,
circuit surface (gate), communication media dimensioning...
A methodological approach is given for describing in UML
both hardware platforms made of DSP, FPGA, GPP, FIFO,
buses, etc. and software applications for radio physical
layers (SPS - Signal Processing Subsystem) as well as
higher layers. This gives the designer the possibility, right at
the UML modeling step, to investigate the array of potential
solutions in order to select some verifying the coherency.
This operation will be performed by verification engines.
The aim is also to provide to the community an UML
profile that includes all the non-functional characteristics of
the hardware processing and communication devices on the
one hand, and those associated to the software components
on the other hand. The methodology should accelerate the
SDR design process by pre-dimensioning the hardware
platform before its effective prototyping.

1. INTRODUCTION

RNRT is the French Ministry of Research and Industry
funding program on telecommunications. A3S responds to
the priorities of the RNRT 2002 call for proposal and aims
at realizing a tight coupling between specification and
system design constraints to enable a priori verification of
the software (SW) architecture adequacy with the hardware
(HW) platform for software radio. Its goals are to promote
the tools and development environment enabling:
• Virtual representation of heterogeneous reconfigurable

systems (DSP, GPP, Logical devices),
• High level system design sustained by languages able

to address both technologies software and hardware,
• Tight coupling with development environments.
A3S (Adequacy between Algorithm and System Application),
aims at performing non-functional coherence pre-verification

of software radio HW architecture specifications and SW
application requirements with UML (Unified Modeling
Language) based models. Non-functional aspects in the
scope of A3S concern execution time, memory size, FPGA
gates and communication media. This set of parameters, in
association with the description graphs of the platform and
the SPS (Signal Processing Subsystem) application, permit
to verify if the coherence and performance constraints of the
software radio system are respected, depending on the
mapping of SW functions on HW components.

This work aims also at contributing at a large scale to
the SDR community by promoting SDR design through
sharing UML profiles and specification methodology. It is
also in the scope of A3S to make its tools compliant with
the Software Communication Architecture (SCA) and to
take into account the elements specified in the existing
Object Management Group (OMG) standardized profiles.

2. UML FOR SDR DESIGN

High level tools dedicated to system design are of great
interest as they guide the designer in his tasks thankfully to
some automations. The concept of a priori system
coherency verification tries to ease and accelerate even
more this phase. An effective solution is to use a well-
established standard as UML, whose concept have already
been proven on many project designs, and is understood by
a huge community of designers and developers. So the gain
is twice: sparing time for modeling language control, and
for design time (due to the tools automations). Moreover
UML is a formal language enabling refinement of the
description of the system up to code generation. Main tools
provide code generation for C/C++, Java and also some
dedicated language through bridges or plug-in like
ESTEREL [1].

2.1. UML profile for Software Radio

UML profiles enable to specialize UML for each work
context by introducing some notions adapted to the field of
application. An UML profile regroups coherently the
extensions of the UML model and defines their coherency

rules. There may be dependencies, inheritances, or
groupings between UML profiles, the main interest being
the reuse of domain specific notions in a standard way.
Some standards profiles are emerging, each of those being
an UML profile dedicated to an application domain or a
technical environment.

The UML profile for software radio [2] is in
elaboration at the OMG. It shall allow the description of the
technology used in software radio. It specifies the interfaces
between the waveform components of an SPS and an
environment constituted of radio devices (amplifier,
antenna), radio services (filters, converters), radio
management components (channels assignation) and
operating system.

2.2. UML profile for Real time, Scheduling and
Performance

The Real time, Scheduling and Performances profile [3]
which describes the characteristics, is an OMG standard
focalized on the representation of properties bound to time,
like the duration, the performance and the planning. It
allows to apply many approaches of the real time analysis,
by allowing them to express the essential attributes for the
system definition and the analysis of their performances.

The goal of this profile is to allow the description of
these temporal properties and to be able to predict the
temporal aspects of the software before the implementation.
The annotations give some elements linked to the quality of
service like the deadlines or the priorities. The intention is
to allow the exploitation of these detailed indications on the
model in order to apply the analysis tools that may detect
incoherence and provide performances predictions.

2.3. UML profile QoS and Fault tolerance

The QoS and Fault tolerance profile [4] describes the
elements allowing to bring non functional information on a
system UML model in terms of quality of service, as well as
UML framework elements allowing to compare and validate
them. The QoS tackles some notions allowing to answer to
the static aspects of the quality of service (that is: fixed at
design time) as far as its dynamic aspects (in the case of
modifications of the QoS requirements during the program
life). In a SDR context, the dynamic evolution of the QoS
may be linked to reconfiguration operations of the system
functionality as illustrated in [5] for instance.

2.4. Model Driven Architecture (MDA)

MDA allows to integrate all the middleware technologies
(such as CORBA, EJB, XML, SOAP, .NET), the languages
and the type of applications, federating them around the
application model. The MDA principle consists on defining

some domain adapted models, independent of the
implementation technology, called PIM (Platform
Independent Model), and to transform these models in some
more specialized models closer to the technology (PSM =
Platform Specific Models) until being able to produce
automatically the final code. The Software Radio profile of
the OMG is looking forward this way in order to specify
some stereotypes that may be used to produce software
radio PIM and PSM models. One of the goals of A3S is to
apply non-functional description elements on PSMs and on
PIMs and to confront them during the verification phase.

3. A3S PROFILE

Currently, major software radio projects are already
described in UML class diagrams for architecture and
sequence diagrams for chaining behavior. The UML profile
for software radio proposes a set of stereotypes that allow
the description of platform independent or dependent
architectures of radio systems on a functional view side
which is relatively close to the SCA (Software
Communication Architecture) specification. To allow the
fine definition of SPS behaviors, it can be extended by the
addition of stereotypes coming from QoS profile and Real
Time profile on each of the components addressed by the
Software Radio profile, describing their quality of service
behavior offered or desired. In order to address the
DSP/FPGA/ASIC (devices usually present in SDR designs)
specific domain of study, it is possible to extend the software
radio profile by introducing DSP and FPGA stereotypes
derived from the processor stereotype of the software radio
profile. These new stereotypes will be then tagged with
stereotype extracted from the QoS profile to describe the
quality of service behavior of the DSP and the FPGA.

3.1. Legacy components

The use of standardized profiles and the components they
introduce, allows the designer to reuse some legacy
components by wrapping them into a standard component,
exhibiting the compliant interfaces. The designer focuses on
architecture or system composition, instead of being
compelled to discover and/or create new components from
scratch. This method has already been used for a long time
by software developers to de-couple provided components
from third-party. Such an approach is the only way to
enable a smooth transition from existing methods to new
one. It also makes possible the integration of non-compliant
external provided component.

3.2. A3S profile and OMG profiles

The A3S profile defines some elements that will be used to
build the software radio architecture models that may be

verified by the A3S tool. These elements extend or use
some elements extracted from the previously explained
OMG standard profiles, as illustrated in figure 1.

OMG profiles

QoS and fault tolerance profile

Real Time, scheduling and
performances profile

Software Radio profile

A3S profile

Use and extend elements of

figure 1: Relation between A3S profile and the OMG
standard profiles

This method warranties the durability, the interchange
and the reusability of the A3S models. Since the interfaces
can be standardized this way, it is then possible to work and
verify any A3S models assuming that the tools integrate the

A3S profile. This A3S profile main interest resides in the
fact that all the interfaces may standardized, and that all the
elements are redefined from the basic types, warranting an
automatically generation of interface specification through
the IDL (Interface Description Language) syntax language.

3.3. UML Meta-model for A3S

The meta-model notion is a formalism allowing the
description of the models. In the scope of A3S, a meta-
model has been defined, illustrated by four main views. The
first one characterizes the A3S project architecture, and the
associated main packages. The second one represents the
software part of the elements definition. The third one
illustrates the mapping of the software components on the
hardware components. The last one defines the needed
elements to build the HW platform. Links and dependencies
between each HW component that can be instantiated
during the modeling phase are depicted in figure 2. A3S
meta-model is connected to OMG profile for Software
Radio through the gray boxes at the top of the figure.

ProgrammableLogicalDevice

a3s-ProgrammableLogicalDevice

a3s-FPGA

composition

processor

a3s-DSP

a3s-DSPvirtual

a3s-CommEquipementConnector

CommEquipementConnector

a3s-MemoryPort a3s-ProcessorPort

a3s-VME

connection

connected

memoryPort

SoftwareProcessor

*

CommEquipement Port

DigitalPort Processora3s-Port

a3s-DigitalPort
*

digitalPort

port

*

a3s-BUS

a3s-GPP

a3s-GPPvirtual

a3s-SoftwareProcessor

a3s-VBUS

a3s-FPGAPorta3s-DSPPorta3s-GPPPort

a3s-CommEquipement

a3s-Memory

a3s-SoftwareProcessorPort

a3s-Memoryvirtual

a3s-Processor

*

1

1

*

1

*

internalMemory

0..1
*

0..1

figure 2 : A3S meta-model for HW components

4. SOFTWARE RADIO DESIGN

4.1. HW and SW description

A3S aims at adding to the design flow new considerations
that make the gateway between functional simulation and
implementation on a hardware embedded platform.
Concretely, this consists in adding to each of the algorithms
that have been functionally checked, non-functional
characteristics depending on the hardware target it will be
supposed to run on. Note that several solutions of
implementation (DSP, FPGA, ASIC) can be considered for
each algorithm. As algorithms are built in software
components they can be easily moved in the multi-
processing architecture. This consideration can be extended
to the communication media nature (bus, FIFO, TCP links,
shared memories…).

Concerning the software components, whatever the
nature of the hardware device that will execute the
algorithm, some non functional parameters are necessary
like I/O data type or repetition of the algorithm, even if
some characteristics are more or less important regarding
the device on which the algorithm will be executed.

Concerning the hardware components, different
characteristics will be considered regarding the HW device
we use. For example a DSP will be described at least by the
clock frequency, code memory size, data memory size, co-
processor number and nature, I/O ports number and nature,
existence of a DMA..., but an FPGA will be described at
least by its gate availability, internal dedicated RAM block
availability, internal dedicated multipliers block availability,
and clock frequency. We also address communication
means (and external memory) like FIFO, bus, dual-port
memory, DMA. Middlewares of the platform are a part of
the system itself, and may have influence on the system
performance.

4.2. UML representation

A two diagrams form representation has been selected to
specify the application and the platform. This couple can
support the entire description of both software and hardware
characteristics in an integrated and clear manner. This could
be rapidly described as a hardware graph that deals with the
platform and a software graph dealing with the application.

The hardware graph, which is an UML 1.4 deployment
diagram, describes the physical connections that exist
between the hardware devices located on the platform. The
example of figure 3 represents a processing node composed
of a DSP, connected through its ports to different kinds of
memory chips with a Vbus. Connections between the
processing node and the rest of the system are also visible
here.

figure 3 : Deployment diagram for a processing node.

The software graph is an UML 1.4 activity diagram as
shown on figure 4, which describes UMTS baseband
processing operations at the transmission.

TransportBloc

<<a3s-Operation>>
INT2

<<a3s-Operation>>
SPRdpdch

<<a3s-Operation>>
SUM

<<a3s-Operation>>
SCR

<<a3s-Operation>>
DPCCHctrl

<<a3s-Operation>>
SPRdpcch

<<a3s-Operation>>
PSH

<<a3s-Operation>>
INT1

<<a3s-Operation>>
EQU

<<a3s-Operation>>
SEG

<<a3s-Operation>>
CRC

RadioProcessing

<<a3s-Operation>>
BBIF

<<a3s-Operation>>
DAC

<<a3s-Operation>>
PAT

<<a3s-Operation>>
TAF

<<a3s-Operation>>
ANT

figure 4 : Activity diagram for a UMTS transmitter

It addresses the logical links between the different SW
components that constitute the system radio functionalities.
It includes the non-functional characteristics that are
independent of the nature of the hardware device that will
execute the application (for example the number of I/O of a
software component, its period and its number of
execution).

4.3. Deployment of the SW application on the HW
platform

The targeted hardware devices for a software component are
defined in a table where each instance of the software
component of the activity diagram is described. This allows
to fill the parameters which are dependent of the hardware
devices concerning each software component. Moreover,
this approach enables to highlight on the deployment
diagram the repartition of the software components on the

hardware platform as illustrated on figure 5 which updates
figure 3 including the software components instances.

figure 5 : Activity diagram for a UMTS transmitter

At each step of the design flow: application
specification, platform specification and hardware-software
mapping the designer needs to verify the coherency and the
performance of his solution. This information is provided
through a constraints composition approach.

5. VALIDATION PROCESS

Software application and hardware specification as well as
mapping software into hardware are performed within the
Objecteering UML software of Softeam company. Non-
functional verification is then performed with an external
tool that exchanges information with Objecteering UML
software through a XMI interface.

5.1. XMI interface

Software/hardware architecture and parameter values are
stored in Objecteering UML software as a XMI format, that
is a structural system representation of the graphical system
view. Attribute values of software/hardware components
and activity diagram from the XMI file are analyzed to build
a General Task Graph (GTG). The method to extract
information from the XMI file is based on the JDOM API
that parses the file [6]. The extraction rule only consists in
exploring the branches of a tree.
The GTG is used to obtain an efficient scheduling of the
application tasks. Two main steps are performed in order to

obtain the performance of the entire system. First, a period
derivation algorithm like [7] permits to determine all the
tasks period which compose the GTG. Then, a static
scheduling of tasks is determined thanks for example to a
Rate Monotonic Scheduling algorithm [8]. Once the tasks
are scheduled performance results are computed and
provided back to the Objecteering UML software as shown
in figure 6.

A3S validation service

XMI

Internal
structure

Objecteering
UML

UML CASE
tool

produces

extracts
 relevant

 data

functional
validation

HW configuration
file generation

parserA3S
profile

check
consistency

XMI

figure 6 : Validation process

5.2. SW architecture validation

The software architecture modeling, which consists in
determining and connecting software components, requires
a phase of analysis to validate the representation under
specification. It is thus necessary to detect structural errors
and provide them to the designer. Thus, a certain number of
constraints of coherence are analyzed. For instance, it is
necessary that, on both sides of inter-connected SW
components, the interface as well as the type of the
exchanged data are identical (throughput, data-width).

Modeling must also provide answers in terms of
feasibility. It is possible to check if the model of execution
and the coherence of the periods of the various SW
components are correct from the attributes associated to
each software component. For instance the detection of an
overlapping between interdependent software components
is performed. Some components can also execute an
operation depending on a signal coming from another
component, which results in constraint of synchronization
that must also be taken into account. Hence, the
verifications done at the software architecture level are
related to specification and execution model coherency.

5.3. HW architecture validation

The modeling method for the platform is very similar to the
application one. The difference is that instead on SW
components, the representation is based on HW

components. Thus, the same kinds of verification are
required. Actually, structural constraints of the system are
targeted in order to check the platform coherency. Hence,
the coherency of types and connections must be validated.
The architecture coherency is the first step of a global
verification process for which an automatic tool efficiently
assists the designer.

5.4. HW/SW mapping verification

The verification corresponds to the global execution time of
the application, which is the combination of the execution
time [7] [9] of each software component running on its
corresponding hardware component. This step takes into
account the constraints of operation, communication,
memory, OS and middleware. Furthermore, in a complex
system where several functions can be carried out in parallel
in a heterogeneous environment, it is important to provide
information on the resources used. Indeed, if the system
does not respect the constraints, the bottlenecks
identification (overuse of a resource whereas others are
available) is important in order to find solutions which may
improve the system. The addition of traces goes in this
direction. The traces give the temporal evolution of a certain
number of selected parameters. It is thus possible to see the
temporal resources occupation, the functions activation and
duration.

Functions are also subjected to scheduling constraints
which depend on the architecture (interconnection and
computation resources) and on the performances that the
designer wants to obtain. They are also related to the
constraints of data dependencies. This is also in the scope of
the tool verification toolbox.

All these verifications enable the designer to validate
early in the design cycle his hardware-software mapping. If
constraints are not met, another mapping can be tested or a
new platform defined in order to converge rapidly to an
efficient solution. The unified UML HW/SW component
modeling and mapping provide a framework where both
platform and application can easily be modified without a
tedious and error prone design effort.

5.5. Web-service validation

The A3S validation of a model built with the A3S profile is
intended to be performed through a web-service portal. A
local or distant server, accepting models compliant to the
A3S profile, will parse and process designs in order to
extract the information that will be used to perform the
validation. So as to warranty the portability and the
exchange of the model, one of the envisaged solution is to
select XMI as output model format of the UML design tool
since XMI is the standard format for UML model

interchange. This XMI file will be the input of the A3S
validation web service, which extracts all parameters
needed by the verification engine.

6. CONCLUSION

A3S provides a design methodology and toolboxes for the
modeling and the verification of SDR systems with respect
to predefined rules. A computation process evaluates
solutions and provides figures to detect design bottlenecks.
This approach does not require a complete description of
each hardware and software component. Only their basic
features are needed in terms of non-functional behavior.
SDR systems costs are drastically reduced while minimizing
design time and number of prototypes. Moreover, it also
impacts analysis of software or hardware architectural
modifications with regards to the functional and non-
functional system requirements. A3S graphical description
currently follows UML1.4 standard, but already anticipated
UML 2.0 evolutions. This transition has been considered
since the very beginning of A3S project.

A3S supports SCA architecture through its compliance
with the OMG profile for software radio, and A3S
consortium made a proposal to the SDR Forum hardware
abstraction layer request for information.

7. ACKNOWLEDGMENTS

Authors would like to acknowledge the French RNRT
funding program that supports A3S project.

8. REFERENCES

[1] http://www-sop.inria.fr/meije/esterel/esterel-eng.html
[2] UML profile for Software radio – OMG draft.
[3] UML profile for Schedulability, Performance, and Time

Specification – ptc/02-03-02 OMG Adopted Specification.
[4] UML profile for Quality of Service and Fault Tolerance

Characteristics and mechanisms – OMG revised submission
[5] C. Moy, A. Kountouris, A. Bisiaux, "HW and SW

Architectures for Over-The-Air Dynamic Re-configuration by
Software Download", Software Defined Radio workshop of
RAWCON'03, August 2003, Boston, USA

[6] Processing XML with JAVA : "A guide to SAX, DOM,
JDOM, JAXP and TrAX", Elliotte Rusty Harold. Addison
Wesley, 8 nov 2002.

[7] A. Dasdan et. Al ."Rate Derivation and Its Applications to
Reactive, Real-time Embedded Systems", ACM/IEEE, 1998

[8] Christian Bonnet, Isabelle Demeure, "Introduction aux
systèmes temps réel", Hermès Sciences, 1999

[9] Richard Gerber, Seongsoo Hong, Manas Saksena
"Guaranteeing Real-time Requirements with Resource-Based
Calibration of Periodic Processes", IEEE transactions on
software Engeneering, July 1995.

http://www-sop.inria.fr/meije/esterel/esterel-eng.html

