
Traffic conditioner: upper bound for the

spacer overflow probability

Nathalie OMNÈS a,∗,
aMitsubishi Electric ITE TCL, 1, allée de Beaulieu, CS 10 806, 35 708 Rennes

cedex 7, France

Annie GRAVEY b,

bDépartement informatique, ENST Bretagne, Technopole de Brest Iroise, B.P.
832, 28 285 Brest Cedex, France

Raymond MARIE c

cEquipe ARMOR, IRISA, Campus universitaire de Beaulieu, 35 042 Rennes
Cedex, France

Abstract

The current challenge for telecommunication networks is to offer new types of ser-
vices. To achieve this, somehow traffic has to be conditioned. A spacer is a token
bucket traffic conditioner that reshapes flows according to a periodic profile. Packets
are delayed until they can be inserted according to this profile.

This short paper concentrates on packet discard by overflow in the spacer. An
upper bound for the overflow probability is given, valid even when it is fully loaded.
It shows the ratio of discarded packets is of the same order than the ratio of out-
of-profile packets.

Key words: Traffic conditioning, leaky bucket, analytical model, upper bound,
loss probability.

∗ Corresponding author.
Email addresses: omnes@tcl.ite.mee.com (Nathalie OMNÈS), annie.gravey@enst-

bretagne.fr (Annie GRAVEY), Raymond.Marie@irisa.fr (Raymond MARIE).

Preprint submitted to Performance Evaluation 14 April 2004

1 Introduction

Although Internet Protocol (IP) is currently widely used, it does not provide
a straightforward solution to the applications’ needs. Hence it does not permit
to offer all the quality of service guarantees on a large scale, and in particular
to real-time services such as distributed games. To overcome this problem,
more services should appear in the future.

The IETF (Internet Engineering Task Force) has standardized in RFC 2475
(see [7]) an architecture for DiffServ (Differentiated Services). For the sake
of scalability, several types of nodes are distinguished. DiffServ ingress and
egress nodes are located on the boundary of a DiffServ domain, while Diff-
Serv interior nodes only implement simple functionalities. This is achieved by
marking packets in the ingress node with a DiffServ codepoint. Complexity is
thus pushed in border routers, which are responsible for offering several types
of services.

A type of service specifies some significant characteristics of packet transmis-
sion, which may include throughput, delay, jitter and loss. To control these
characteristics, the network somehow needs to control incoming flows, which
is achieved by traffic conditioning functions in ingress and egress nodes.

A traffic conditioner measures the temporal properties of a stream of packets
to determine whether each packet is in-profile or out-of-profile. Token buckets
are commonly used for identifying out-of-profile packets (see [1], [2, subsec-
tion 5.3.3], [7, subsection 2.3.2]). They allow out-of-profile packets to be either
queued until they are in-profile, or discarded, or marked with a new codepoint,
or forwarded unchanged while triggering some accounting procedures. Gener-
ally speaking, token buckets allow burstiness in the output stream, up to a
given maximum burst size.

A leaky bucket can be seen as a particular token bucket that enforces a rigid
output pattern, allowing no burstiness in the output stream (see [2, subsection
5.3.3]). It needs two parameters to identify a constant bit rate source : r,
the peak rate, and b, the bucket depth. The peak rate is not sufficient for
identifying out-of-profile packets as data go through several layers to reach
the physical one, as well as through several network devices. Unless these
devices are synchronous, periodicity gets corrupted by them.

A spacer is a token bucket whose output is periodic until no more packets are
available, thus allowing no burstiness. In [1, corollary 1.2.1 p.16], it is shown
that spacers and leaky buckets are equivalent in case of constant size packets.
To shape the outgoing flow, packets in advance are delayed until they can
be inserted according to a periodic profile. Consequently late packets do not
suffer from any further delay. It has been proved in [1, section 1.5.3] that

2

Time

period

L L

period

Level

b

Overflow
Packet k arrival

Packet k departure

k

k

1 2 3 4 5 6 8 9 11

3

4

5

6
7

8

9
10

12T

Idle Idle

2 T1

12
Busy period

11

Fig. 1. Spacer occupancy level vs. time

spacing does not increase delay nor bandwidth requirements. It does not even
increase buffer requirements since interior nodes only need to implement very
small buffers. Furthermore, limiting the flow to the a given rate at the access
facilitates management in the core network, which is a key issue (see [2,4–6]).

Let us consider Figure 1. Each step upwards correspond to a packet arrival,
while each step downwards to a departure. Packets 2 to 6 are in advance, so
they are delayed in the spacer. On the contrary, packet 12 is late, so it is
retransmitted as soon as it enters the spacer, and it induces an idle period.
Such a period begins when the spacer is empty and waiting for a new packet
to transmit. It ends when a new packet arrives. We see that the output traffic
is shaped.

The spacer does not need to absorb all bursts, as they correspond to packets
that have suffered from a long delay in the network devices they crossed. The
larger the burst is, the greater the delay perceived by the receiver. Therefore
the spacer lops long bursts by discarding packets when they arrive as the
spacer is full. This is represented in Fig. 1, where packets 7 and 10 are lost by
overflow.

The spacer cannot be reduced to a queuing analysis in a straightforward man-
ner as it consists of a G/D/1 system, which we aim at studying even if the
load ρ = 1. This is a particularly delicate point. It cannot either be analyzed
as a ”(max,+)” system unless we give up the random behavior of the core
network, which would take off an essential property.

Our aim in this article is to study the impact of the spacer capacity on the
overflow probability (see [3,4]). To do so, we state working assumptions and
define the variables that are central to our modelling in section 2. We then

3

k

k

T

k

F

W k+ minimmum

transmission delay

L

t

N

k

Network

Spacer

b

Z
tat

DiffServ Domain

T

Fig. 2. Variables

study the overflow probability in section 3, where our main result is an up-
per bound presented in proposition 3. We also prove the upper bound in a
deterministic context. We finally conclude in section 4. Main proofs and in-
termediate lemmas are presented in the appendix.

2 Assumptions and formal description

The assumptions made all along this paper are the following :

i) Packets are of constant size.
ii) Packets arrive in sequence.
iii) The spacer is empty before packet 1 arrives.
iv) All packet losses are due to overflow.
v) The spacer load is smaller than or equal to 1.

We assume that the packets are of constant size for the sake of simplicity. This
is the case for telephony over IP (Internet Protocol) and it also corresponds
to the case of an ATM (Asynchronous Transfer Mode) network (see [2]).

Let us consider Figure 2. TF is a constant defined as the interval between the
generation of two consecutive packets at the source level. As packets are of
constant size, the parameters r (the peak rate) and b (the bucket depth) of
the leaky bucket can be replaced by TF and τF , the delay variation tolerance,
also called the jitter (see [1, corollary 1.2.1 p.16], [2, p. 466-467]). If S denotes
the packet size in bits, we have TF = S/r. Furthermore, it is assumed that
the interval between arrivals of two consecutive packets into the spacer lies
between TF − τF and TF + τF .

Let tatk be packet k’s theoretical arrival time in the spacer, tk its arrival time,
and TL the interdeparture time of packets from the spacer. The sequence of
theoretical arrival times is used to generate the output of the spacer. Actually,
packet k is taken out of the spacer when tatk is reached. Furthermore, the
spacer is in an idle period at time t if and only if the time elapsed since the
last packet to enter has left is greater than or equal to TL. Note that tatk is

4

Table 1
Basic notations
tatk packet k’s theoretical arrival time in the spacer

tk packet k’s arrival time in the spacer

b capacity of the spacer

TF interval between generation of two consecutive packets at source level

τF delay variation tolerance of the flow entering the spacer

TL interdeparture time of packets from the spacer

Zk occupancy level of the spacer at t−k

Wk packet k’s waiting time in the network.

Nk Number of packets that were lost by overflow before packet k’s arrival.

moved forward when a packet arrives late, and backward when a packet is
lost. It is computed using the following rule :

tatk =





t1 for k = 1

tatk−1 if packet k − 1 is lost and tk ≤ tatk−1

tatk−1 + TL if packet k − 1 is not lost and tk ≤ tatk−1 + TL

tk otherwise.

(1)

Furthermore, packet k is conforming to parameters (TF , τF) (or in-profile) if
and only if

tatk − tk ≤ τF . (2)

As we assume that the spacer load is smaller than or equal to 1, we have
TL ≤ TF . If TL = TF then the spacer is fully loaded.

We further denote the spacer occupancy level just before packet k’s arrival
by Zk, the waiting time packet k is subject to in the network by Wk, and
the number of packets that were lost by overflow before packet k’s arrival by
Nk. Wk is defined as the difference between the observed and the minimum
transmission delay in the network. Due to the periodicity of the initial stream,
we have tk = t1−W1 + (k− 1)TF + Wk, ∀k ≥ 1. All these basic notations are
depicted in Table 1 and Figure 2.

5

3 Study of the overflow probability

With the help of the variables defined in section 2, we are now going to state
necessary conditions for overflow, give a formal expression for the sequence of
theoretical arrival times, and finally study the probability for a packet to be
lost in the spacer.

3.1 Preliminaries

Packet k is lost only if it reaches the spacer in advance. In particular, it implies
it reaches the spacer before a particular packet, denoted by P (k), leaves the
spacer. Therefore we have

(Zk = b) =⇒
(
tk < tatP (k)

)
. (3)

Proof Let CTi denote the ith packet that is not lost by overflow in the spacer.
If Zk = b, let J be a random variable taking its value in N such that tatCTJ−1

≤
tk < tatCTJ

. At t−k , k−1 packets arrived, Nk of which overflowed. Furthermore,
if tatCTJ−1

≤ tk < tatCTJ
, then J − 1 packets have left. Therefore there are

k− 1−Nk−J +1 packets in the spacer. This leads to the following condition
on J : Zk = k − Nk − J = b =⇒ J = k − Nk − b. In particular, P (k) =
CTk−Nk−b. 2

Equation 3 depends on the sequence (tatk)k≥1, which needs to be expressed
in a more tractable way than equation 1. To achieve this, we firstly need
to introduce DAk, which quantifies the theoretical arrival times shift due to
the idle period that occurs just before packet k’s arrival, if any. We secondly
introduce δk, which equals 1 when packet k arrives in a idle period and 0
otherwise.

Proposition 1 ∀k ≥ 2, if packet k does not overflow, then tatk = t1 + (k −
1)TL +

∑k
j=2 δjDAj − NkTL. Packet k arrives in an idle period if and only if

δk = 1.

The proof which implies the introduction of further variables is presented in
the appendix 5.1. The proposition shows that

∑k
j=2 δjDAj is the total duration

of the idle periods that occurred before packet k’s arrival. Hence
∑k

j=2 δjDAj

represents the theoretical arrival times shift (delay) due to idle periods oc-
curring between packet 1 and packet k arrivals, while NkTL is the theoretical
arrival times shift (advance) due to packets lost by overflow in the spacer. We

6

can sum up this into Xk =
∑k

j=2 δjDAj − NkTL, which represents the theo-
retical arrival times shift between packet 1 and packet k arrivals. Let us now
give a new necessary condition for packet k to overflow.

Proposition 2 (Zk = b) =⇒ (W1 −Wk > (k − 1)(TF − TL) + bTL −Xk) .

Proof Using proposition 1, we have tatP (k) = t1+(P (k)−1)TL+
∑P (k)

j=2 δjDAj−
NP (k)TL. But the number of packets that entered the spacer before packet k
is k − 1−Nk. It also equals P (k)−NP (k) + b− 1 as P (k) is the next packet
to leave the spacer, and the spacer is full when packet k arrives. Therefore
P (k) − NP (k) = k − Nk − b. Furthermore, δj = 0, ∀j = P (k) + 1, . . . , k, as
these packets do not arrive in an idle period. This leads to tatP (k) = t1+(k−b−
1)TL+

∑k
j=2 δjDAj−NkTL. Finally, we obtain (Zk = b) =⇒

(
tk < tatP (k)

)
=⇒

(W1 −Wk > (k − 1)(TF − TL) + bTL −Xk). 2

3.2 Upper bound in a stochastic context

Thanks to proposition 2, we can now give an upper bound for the overflow
probability, as shown in the proposition below. This is our essential result, as
it proves that the loss ratio is proportional to the out-of-profile packets ratio,
even if the spacer is fully loaded.

Proposition 3 Let k be a packet of the flow. If

i) P(|Wi −Wj| > τF) < ε, ∀i, j ∈ N∗,
ii) (Wk+1 −Wk)k≥1 is a sequence of independent random variables, and

iii) b = max
(
2,

⌈
τF

TL

⌉)
where dxe is the smallest integer greater than x, then

P(Zk = b) < ε.

Proof Let us define Ai as is the index of the first packet of the ith idle period.
The key points are to show firstly that (Zk = b) =⇒ (WAi

− Wk > bTL)
and secondly that {Ai = j} ∈ σ(W2 −W1, . . . , Wj −Wj−1). Then, on the ith

idle period, {Ai = j} and {Wj −Wk > bTL} are independent by assumption
ii). Finally, assumption iii) implies bTL ≥ τF , and assumption i) leads to the
upper bound. A detailed version of this proof is presented in the appendix
5.2. 2

Assumption ii) means that the sequence of waiting times (Wk)k≥1 has inde-
pendent increments. Intuitively, this is valid firstly in a large network which is
in a stationary state. Secondly, it is valid if the network load varies with time

7

and the period of the flow is large compared to the network load variation
scale. Thirdly, it is valid if the period of the flow is small compared to the
network load variation scale, as the network is then almost seen as stationary
by this flow. Therefore assumption ii) applies to a large range of networks,
including high-speed packet networks such as the Internet.

3.3 Upper bound in a deterministic context

The theory of Network Calculus has already solved this problem in a deter-
ministic context. In particular, in [1, Fig. 1.10 p.30], the buffer bound is given.
We will now show that our modelling leads to the same result.

Proposition 4 If b = max (2, dτF /TLe) and the flow is conforming with pa-
rameters (TF , τF), then no packet is lost by overflow in the spacer.

Proof Assume we are in the first busy period, and there exists an index k such
that packet k is the first packet to overflow. We have k ≥ b+2. By equation 3,
we have Zk = b =⇒ tk < tatP (k). As packet k is the first to overflow, P (k) =
k− b. Furthermore, during the first busy period, tatk−b = tat1 +(k− b− 1)TL.
Hence Zk = b =⇒ W1 − Wk > bTL ≥ τF . But applying equations 1 and 2,
t1 + (k − 1)TF − tk ≤ τF , therefore W1 −Wk ≤ τF . Finally, k doesn’t exist.
Applying the same reasoning, it is straightforward to prove by induction that
no packet overflows during the jth busy period. 2

4 Conclusion

Traffic conditioning at the ingress of a DiffServ domain can be achieved by a
spacer, which is a particular token bucket. We have seen in this article that it is
possible to model it with simple mathematical tools. Applying our model, we
have presented in proposition 3 an upper bound for the overflow probability.
It proves that the probability of losing packets is of the same order than the
probability that the network jitter exceeds the jitter tolerance. Although this
result is intuitively valid, it had never, to our knowledge, been proved. Our
proof takes into account the random nature of the core network, and is valid
even if the spacer is fully loaded. This is important, as introducing either a
random context or a load equal to 1 may have unexpected consequences. From
a practical point of view, this result can be used to offer statistical guarantees
to stringent flows.

As the spacer size increases linearly with the jitter, it seems crucial to reduce
this jitter. This can be achieved by implementing traffic control functions, and

8

in particular appropriate schedulers. Future work shall include application to
variable size packets.

5 Appendix

5.1 Proof of proposition 1

By definition of DAk and δk we have DAk = W2 −W1 + TF − TL + N2TL for
k = 2, DAk = Wk −W1 + (k − 1)(TF − TL)−∑k−1

j=2 δjDAj + NkTL for k ≥ 3,
and δk = 1DAk>0, for k ≥ 2.

Let Ek be the last packet that entered the spacer before packet k. Packet k
arrives in an idle period if and only if packet k’s arrival time, tk, is greater
than tatEk

+TL. Any packet reaching the spacer in an idle state is immediately
retransmitted. Therefore we have, ∀k ≥ 1, tatk = tk if tk > tatEk

+ TL, and
tatEk

+ TL otherwise.

We now prove proposition 1 by induction. We also prove that, if Ek < k − 1,
then δEk+1 = δEk+2 = . . . = δk−1 = 0.

For k = 2, we have tat2 = tat1 + TL if t2 ≤ tat1 + TL and Z2 < b, and t2
otherwise.

As Z2 ≤ 1 < b, N2 = 0, tat1 = t1 and t2 = t1 − W1 + TF + W2, we have
tat1 +TL ≥ t2 ⇐⇒ W2 ≤ W1 +TL−TF ⇐⇒ δ2 = 0. If t2 ≤ tat1 +TL, we have
tat2 = tat1 + TL = t1 + TL + δ2DA2 − N2TL. Furthermore, if t2 > tat1 + TL,
tat2 = t2 = t1−W1 + TF + W2 = t1 + DA2 + TL. Hence in both cases we have
tat2 = t1 + TL + δ2DA2 −N2TL.

If the result is true up to k − 1, as Zk < b, we have tatk = tatEk
+ TL if

tk ≤ tatEk
+ TL, and tk otherwise.

But ZEk
< b and 1 ≤ Ek ≤ k − 1, therefore tatEk

= t1 + (Ek − 1)TL +∑Ek
i=2 δiDAi −NEk

TL.

Firstly, if tk ≤ tatEk
+ TL, we have tk ≤ tatEk

+ TL ⇐⇒ t1−W1 + (k− 1)TF +
Wk ≤ t1 + (Ek − 1)TL +

∑Ek
j=2 δjDAj − NEk

TL + TL ⇐⇒ Wk ≤ W1 − (k −
1)TF +

∑Ek
j=2 δjDAj + (Ek −NEk

)TL.

Let us show that, if Ek < k − 1, then δEk+1 = δEk+2 = . . . = δk−1 = 0.
As packets Ek + 1, Ek + 2, . . . , k − 1 overflow, tEk+1 ≤ tatEk

=⇒ t1 − W1 +
EkTF + WEk+1 ≤ t1 + (Ek − 1)TL +

∑Ek
j=2 δjDAj −NEk

TL =⇒ WEk+1 −W1 +

Ek(TF − TL) − ∑Ek
j=2 δjDAj − NEk+1TL ≤ −TL, as NEk+1 = NEk

. Therefore

9

tEk+1 ≤ tatEk
=⇒ δEk+1 = 0. If δEk+1 = δEk+2 = . . . = δEk+i−1 = 0 for

Ek + i ≤ k − 1, then tEk+i ≤ tatEk
=⇒ t1 −W1 + (Ek + i − 1)TF + WEk+i ≤

t1 +(Ek−1)TL +
∑Ek

j=2 δjDAj−NEk
TL =⇒ δEk+i = 0, as NEk+i = NEk

+ i−1.
Hence δEk+1 = δEk+2 = . . . = δk−1 = 0.

Therefore tk ≤ tatEk
+ TL ⇐⇒ Wk ≤ W1 − (k − 1)TF +

∑Ek
j=2 δjDAj + (Ek −

NEk
)TL ⇐⇒ Wk ≤ W1 − (k− 1)(TL − TF) +

∑k−1
j=2 δjDAj −NkTL ⇐⇒ δk = 0.

This means an idle period occurs before t−k if and only if δk = 1. So we have
tatk = t1 +(Ek− 1)TL +

∑Ek
i=2 δiDAi−NEk

TL +TL = t1 +
∑k−1

i=2 δiDAi +(Ek−
NEk

)TL = t1+
∑k

i=2 δiDAi+(k−1−Nk)TL = t1+(k−1)TL+
∑k

i=2 δiDAi−NkTL.

Secondly, if tk > tatEk
+TL, then δk = 1, tatk = tk = t1−W1 +(k−1)TF +Wk

and tatk = tk = t1−W1+(k−1)TF +Wk = t1+(k−1)TL+
∑k

i=2 δiDAi−NkTL.

5.2 Proof of proposition 3

Lemma 5 Ai = inf{k > Ai−1 : Wk −WAi−1
+ (k − Ai−1)(TF − TL) + (Nk −

NAi−1
)TL > 0}. Furthermore,

∑i
j=1 DAAj

= WAi
−W1 + (Ai − 1)(TF − TL) +

NAi
TL.

Proof The result is straightforward for i = 2. If the result is correct for i− 1,
then for k > Ai−1, DAk = Wk−W1 +(k−1)(TF −TL)−∑i−1

j=1 DAAj
+NkTL =

Wk−W1+(k−1)(TF−TL)−WAi−1
+W1−(Ai−1−1)(TF−TL)−NAi−1

TL+NkTL,
therefore packet k arrives in an idle period if and only if (DAk > 0) ⇐⇒(
Wk −WAi−1

+ (k − Ai−1)(TF − TL) + (Nk −NAi−1
)TL > 0

)
. Finally,

∑i
j=1 DAAj

= WAi
− WAi−1

+ (Ai − Ai−1)(TF − TL) + (NAi
− NAi−1

)TL +∑i−1
j=1 DAAj

= WAi
−W1 + (Ai − 1)(TF − TL) + NAi

TL. 2

Lemma 6 ∀k ∈ N∗, Nk+1 ∈ σ(Wk −Wk−1,Wk−1 −Wk−2, . . . , W2 −W1).

Proof We prove this result by induction. We know that N2 = N3 = . . . =
Nb+2 = 0, so this is true for k ≤ b + 1. We know Nb+3 ∈ {0, 1}, and Nb+3 =
1 ⇐⇒ tb+2 < tatCT(b+2−b−1)

+TL ⇐⇒ t1−W1 +(b+1)TF +Wb+2 < t1 +TL ⇐⇒
W1 −Wb+2 > (b + 1)TF − TL. Hence the result is true at index b + 2.

Assume this is true for all i ≤ k. We have Nk+1 = Nk if packet k does not
overflow, and Nk+1 = Nk + 1 otherwise. Hence
Nk+1 −Nk = 1 ⇐⇒ tk < tatCT(k−Nk−b−1)

+ TL ⇐⇒ W1 −Wk + (k −Nk − 2−
b)TL +

∑k−Nk−b−1+NCT(k−Nk−b−1)

j=2 δjDAj > (k − 1)TF . But CT(k−Nk−b−1) < k,
so by applying the induction assumption we have NCT(k−Nk−b−1)

∈ σ(Wk −
Wk−1, . . . ,W2 −W1). Furthermore, DA2 ∈ σ(W2 −W1). It is straightforward

10

that DAj ∈ σ(Wj − Wj−1, . . . , W2 − W1), and so for δj = 1DAj>0. Finally,
Nk+1 −Nk ∈ σ(Wk −Wk−1, . . . , W2 −W1). 2

Proof of proposition 3 Let k be a packet of the ith busy period. We have by
lemma 5 : XAi

= WAi
−W1 +(Ai−1)(TF −TL). Furthermore, knowing packet

k belongs to the ith busy period, Xk = WAi
−W1 +(Ai−1)(TF −TL)+(NAi

−
Nk)TL. Hence Zk = b =⇒ Wk < W1 − (k − 1)TF + (k − b − 1)TL + Xk ⇐⇒
WAi

−Wk > bTL+(k−Ai)(TF−TL)+(Nk−NAi
)TL > bTL ≥ τF . Using equation

2, we conclude that P(Zk = b) ≤ P(Wk < W1−(k−1)TF +(k−b−1)TL+Xk) ≤
P (WAi

−Wk > τF) =
∑

j≤k−1P (Wj −Wk > τF |Ai = j)P(Ai = j).

By lemmas 5 and 6, {Ai = j} ∈ σ(W2−W1, . . . , Wj−Wj−1), and {Wj−Wk} ∈
σ(Wk−Wk−1, . . . , Wj+1−Wj). By ii) σ(W2−W1, . . . , Wj−Wj−1) and σ(Wk−
Wk−1, . . . ,Wj+1−Wj) are independent. ThereforeP (Wj −Wk > τF |Ai = j) =
P (Wj −Wk > τF). Hence P(Zk = b) ≤ ∑

j≤k−1P (Wj −Wk > τF)P(Ai =
j) < ε

∑
j≤k−1P(Ai = j) ≤ ε. 2

References

[1] Jean-Yves Le Boudec, Patrick Thiran, Network Calculus, A Theory of
Deterministic Queuing Systems for the Internet, Lecture Notes in Computer
Science 2050, Springer 2001.

[2] Andrew S. Tanenbaum, Computer Networks, 3rd edition, Prentice-Hall
International, Inc., 1996.

[3] Nathalie Omnès, Thèse no2416, Analyse d’outils de contrôle de la qualité de
service dans les réseaux de paquets haut débit, PhD, Université de Rennes 1,
France, octobre 2001.

[4] P. Boyer, F. Guillemin, M. Servel, J. P. Coudreuse, Spacing cells protects and
enhances the utilization of ATM network links, IEEE Network Magazine, pp.
38-49, September 1992.

[5] F. Guillemin, P. Boyer, J. Boyer, O. Dugeon and C. Mangin, Regulation of TCP
over ATM via cell spacing, in Proceedings of ITC’16, Edinburgh, june 1999.

[6] Gunnar Karlsson, Fredrik Orava, The DIY Approach to QoS, in Proceedings of
IWQoS’99, IEEE Catalog Number 98EX354, 1999.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, RFC 2475,
An architecture for Differentiated Services, IETF, December 1998.

[8] E. Rosen, A. Viswanathan and R. Callon, RFC 3031, Multiprotocol Label
Switching Architecture IETF, January 2001.

11

