
1

Multi-dimensional mappings for iteratively decoded

BICM on multiple antenna channels

Nicolas Gresset , Student Member, IEEE, Joseph J. Boutros , Member, IEEE
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Abstract

Multi-dimensional binary mappings for bit-interleaved coded modulations on ergodic multiple antenna channels with

iterative decoding are presented. After derivation of a closed form expression for the pairwise error probability under

ideal maximum likelihood decoding, the design criterion for mapping optimization is established from the maximum

likelihood performance of the ideally interleaved channel. It coincides with the figure of merit derived from the genie
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are proposed. They allow for a reduced decoding complexity as they achieve near turbo code performance with a single

convolutional code.
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I. Introduction

The growing importance of iterative and probabilistic processing of information in communication systems during the

last decade has permitted to attain exceptional performance on different kinds of data transmission channels. Graph

codes for binary channels have been extensively analyzed [1][2][3][4] and bit-interleaved coded modulations (BICM) for

non-binary channels became a widely known standard technique for coded modulations with and without frequency

selectivity [5][6][7][8].

Under realistic conditions and without any mild theoretical constraint, the nature of such concatenated systems

does not allow us to derive closed-form expressions for the error rate versus the number of decoding iterations. In this

paper, we determine the exact pairwise error probability of BICM over multiple antenna channels by assuming an ideal

channel interleaver and a maximum likelihood (ML) decoder. Then, we present a tight upper bound on the ideal ML

performance of BICM for ergodic multiple antenna channels.

The binary mapping of a signal constellation is an old problem in communication theory. Mappings based on Gray

code [9] and Ungerboeck set partitioning [10] are among the most famous binary labelings for coded and uncoded

modulations. Multi-dimensional mapping has been extensively studied in the 80’s for coded constellations on bandwidth-

limited channels, as in [11] for the transmission of fractional bits, in [12][13][14] for trellis-coded multi-dimensional

modulations, and in [15] for lattice constellations. More recently, in a parallel work to ours, a multi-dimensional binary

mapping and a construction algorithm have been proposed for QPSK on single antenna fading channels [16]. Also,

multi-dimensional mappings for multiple antenna BPSK signaling have been described in [17] using a design criterion

which is a special case of our figure of merit (see (36) below).

In this paper, a figure of merit for the binary mapping is derived from the ideal ML performance on an ergodic

multiple antenna channel. A design criterion based on this figure is applied to the signal constellation to find good

mappings suited for space-time coding. Then, it is shown that the mapping figure of merit given by the ML performance

is equivalent to the one given by the closed-form expression of the genie performance, related to ideal iterative decoding.

The genie method has been previously applied to single antenna fading channels [18] and to multiple antenna channels

with mono-dimensional complex mappings [19].
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Optimized mappings may be determined either by searching inside a randomly selected list or by applying the binary

switching algorithm (BSA) presented in [20][21]. Due to the intractability of the more optimal BSA for large labeling

sizes, the first method is used in high complexity systems.

In section II, the system model and notations are presented. In section III, the new tight asymptotic bound for

the BICM maximum likelihood performance is computed. It is then compared to genie closed-form performance at

the detector output in section IV. In section V, the multi-dimensional mappings are optimized using a figure of merit

derived from performance expressions. In section VI, the number of dimensions and the achievable mapping gain are

increased by the use of a linear precoder. The convergence behaviour of the optimized mappings is presented in section

VII, we show that elementary error-correcting codes (e.g., two-state convolutional code) should be used to achieve the

potential gain at relatively low signal to noise ratio (SNR). Finally in section VIII, theoretical results are checked by

Monte-Carlo simulations.

II. System Model and Notations

We consider the transmission of a data frame over an ergodic frequency non-selective Rayleigh fading channel with nt

transmit antennas and nr receive antennas. The channel path connecting antenna i to antenna j during time period k

is modeled by a complex Gaussian distributed coefficient hkij , with E[hkij ] = 0, E[|hkij |2] = 1, i = 1 . . . nt, j = 1 . . . nr

and k = 1 . . . T . A frame is transmitted over T time periods. Here, the symbol E[.] denotes mathematical expectation.

The multiple input multiple output (MIMO) channel coefficients hkij are supposed to be statistically independent. As

usual, the MIMO channel at time k will be represented by its nt×nr matrix Hk = [hkij ]. Let H denote the set of channel

realizations observed during a frame transmission. As shown in Fig. 1, a binary convolutional encoder with kc inputs

and nc outputs, followed by a pseudo-random interleaver, generates a codeword c. The length of the convolutional code

trellis is Lc branches. The codeword is mapped into nt-dimensional constellation symbols zk ∈ Ω ⊂ C
nt , k = 1 . . . T ,

building a frame. In the sequel, the elements of Ω are called points. If quadrature amplitude modulation (QAM) is

used for digital transmission, then Ω is the Cartesian product (2m-QAM)nt , i.e., the set of all points zk generated

by the QAM mapper with cardinality |Ω| = 2mnt . The notation Ω will equally represent the multi-dimensional QAM

constellation and its binary labeling of length mnt bits per point. The channel input-output relation is

yk = zkHk + ηk (1)
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where yk ∈ C
nr , and ηk is a circularly symmetric complex Gaussian noise with zero mean and covariance matrix

2N0Inr
.

An iterative joint detection and decoding receiver is based on the exchange of soft values between the soft-input

soft-output (SISO) multi-dimensional QAM-detector and the SISO convolutional decoder. The SISO detector computes

extrinsic probabilities ξ(c�) via a classical sum product expression including the conditional likelihoods p(yk|z) and the

a priori probabilities π(c�) fed back from the SISO decoder. The extrinsic probability corresponding to the �th coded

bit beeing set to 1 is

ξ(c�) =

∑
z′∈Ω(c�=1)

[(
e−

‖yk−z′Hk‖2

2N0

)∏
r �=� π(cr)

]
∑

z∈Ω

[(
e−

‖yk−zHk‖2

2N0

)∏
r �=� π(cr)

] (2)

The subset Ω(c� = 1), for � = 1 . . . mnt, gathers all vectors z where the �th bit is equal to 1. The SISO decoder

computes soft values (a posteriori and extrinsic probabilities) for the coded bits by applying the forward-backward

algorithm [23] on the trellis graph of the convolutional code. The information exchange between inputs and outputs of

the two received blocks is shown on Fig. 2.

III. Closed form expression for the pairwise error probability under ideal ML decoding

A tight upper bound on the pairwise error probability of error-free decoding for a MIMO-BICM has been given in

[24]. It is based on an integral expression that can be evaluated by the Gauss-Chebyshev quadrature [6]. Here, we

establish a closed form expression for the exact pairwise error probability on ergodic MIMO channels under maximum

likelihood decoding of the BICM and ideal channel interleaving. The mapping design criterion is directly derived from

this pairwise error probability expression as shown later in section V. Furthermore, tight union bounds on both frame

and bit error rates (FER and BER) will be presented and used to validate the asymptotic signal to noise ratio gain

for optimized mappings.

Let C denote the error correcting code and CE the set of Euclidean sequences obtained after applying the QAM

mapping Ω and the channel matrix set H to the binary codewords, i.e., CE is the Euclidean code representing the

transmitted BICM and including the multiple antenna channel. Consider two codewords X(c) ∈ CE and X(c′) ∈ CE

with a Hamming distance w = dH(c, c′) between the convolutional codewords c and c′. If we assume ideal channel

interleaving, then the w difference positions are spread in space and time over w distinct transmission periods. Clearly,

the conditional pairwise error probability PH,w(X(c) → X(c′)) only depends on those w positions. Hence, we will reduce
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the notations of X(c) and X(c′) to these w time periods. We introduce X = {x1, . . . , xw} and X ′ = {x′
1, . . . , x

′
w},

where the components xk and x′
k are points belonging to the set ΩHk.

Our aim in this section is to compute Pw (c → c′) = EH [PH,w (c → c′)]. The conditional pairwise error probability

PH,w (c → c′) is expressed as

PH,w (c → c′) = PH,w (X → X ′) = P
(
e−

Pw
k=1 ‖yk−xk‖2/2N0 < e−

Pw
k=1 ‖yk−x′

k‖2/2N0

)
(3)

For a given set of channel realizations H, a correct pairwise decision is taken by the ML decoder when the log-likelihood

ratio LLRH is positive:⎧⎪⎪⎨
⎪⎪⎩

LLRH = log
(

e− Pw
k=1 ‖yk−xk‖2/2N0

e− Pw
k=1 ‖yk−x′

k
‖2/2N0

)
=

Pw
k=1 ‖yk−x′

k‖2−‖yk−xk‖2

2N0
=
∑w

k=1 LLRk,Hk

Pw,H (c → c′) = P (LLRH < 0) = P (
∑w

k=1 LLRk,Hk
< 0)

(4)

Thus,

Pw (c → c′) = EH [P (LLRH < 0)] = EH

[∫ 0

−∞
pLLRH(x)dx

]
=
∫ 0

−∞
pLLR(x)dx (5)

where pLLRH(x) is the probability density function of LLRH and pLLR(x) = EH [pLLRH(x)] is the probability density

function of LLR = EH [LLRH]. We will first express the characteristic function ψLLR(jν) of LLR. Since the w random

variables LLRk,Hk
are independent and the channel is ergodic, using LLRH =

∑w
k=1 LLRk,Hk

, we have

ψLLR(jν) = EH

[∏
k

ψLLRk,Hk
(jν)

]
=
∏
k

ψLLRk
(jν) (6)

where ψLLRk
(jν) = EHk

[
ψLLRk,Hk

(jν)
]

and ψLLRk,Hk
(jν) is the characteristic function of pLLRk,Hk

(x).

Two points are involved in the expression of the partial log-likelihood ratio LLRk,Hk
: xk = zkHk and x′

k = z̄�k

k Hk,

where Hk denotes an instance of the channel matrix set H at time period k. As ideal interleaving is assumed, the

point z′k = z̄�k

k is obtained by flipping the bit at position �k in the binary labeling of zk (1 ≤ �k ≤ mnt). The squared

Euclidean distance between zk and z̄�k is denoted d2
k =

∥∥∥zk − z̄�k

k

∥∥∥2

. The distance spectrum {dk} depends on the

modulation type, its size and its binary labeling. For a given 2m-QAM modulation, non-equivalent labelings lead to

non-identical bit error rate performances.

First, we compute the characteristic function of LLRk,Hk
for a binary modulation (BSK) defined by two points
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{zk, z̄�k

k } transmitted over a MIMO channel. The expression of LLRk,Hk
is:

LLRk,Hk
=

1
2N0

(∥∥∥yk − z̄�k

k Hk

∥∥∥2

− ‖yk − zkHk‖2

)
=

1
2N0

(
d2

kRk + 2�
(
(zk − z̄�k

k )Hkη∗
k

))
(7)

where ∗ is the transpose conjugate and Rk is the squared norm of the vector (zk−z̄
�k
k )

dk
Hk. If a classical mono-dimensional

mapping is used independently on each transmit antenna, the difference vector zk−z̄�k

k has only one non-null component

in the position given by ��k/m	. However, in order to stay in the general case of multi-dimensional mappings which will

be useful in the following, we do not take any assumption on vector zk−z̄�k

k . It can be shown that �
(

(zk−z̄
�k
k )

N0
Hkη∗

k

)
is a

Gaussian noise with zero mean and variance d2
kRk/N0. Moreover, since (zk−z̄

�k
k )

dk
Hk includes nr independent identically

distributed complex Gaussian random variables with zero mean and unit variance, then Rk has a Chi-square distribution

of order 2nr. First, notice that the random variable LLRk,Hk
is Gaussian distributed.

LLRk,Hk
∼ N

(
d2

kRk

2N0
,
d2

kRk

N0

)
(8)

The characteristic function of LLRk,Hk
is

ψLLRk,Hk
(jν) = E

[
ejνLLRk,Hk

]
= exp

(
ν

2
d2

kRk

N0
(j − ν)

)
(9)

The mathematical expectation ERk
[.] over Rk is equivalent to the expectation over Hk. Thus,

ψLLRk
(jν) = ERk

[
ψLLRk,Hk

(jν)
]

=
(
1 − d2

k

2N0
ν(j − ν)

)−nr

=
(

d2
k

2N0
(ν − ja(dk))(ν − jb(dk))

)−nr

(10)

where ⎧⎪⎪⎨
⎪⎪⎩

a(dk) = 1
2

(
1 +

√
1 + 8N0

d2
k

)
b(dk) = 1

2

(
1 −

√
1 + 8N0

d2
k

) (11)

Let D denote the set of all Euclidean distances obtained by flipping one bit in the constellation Ω. Taking nd as the

number of different distances occuring in the sequence (d1, d2, . . . , dw), we define the set Δ = {δ1, . . . , δnd
} ⊂ D from

the sequence (d1, d2, . . . , dw) ∈ Δw ⊂ Dw , i.e., the Euclidean distance dk takes its values from the set Δ. It is clear

that nd = |Δ| ≤ |D|. Let the integer λk denote the frequency of δk in the sequence (d1, d2, . . . , dw),
∑nd

k=1 λk = w and

Λ = {λ1, . . . , λnd
}.
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Using (6), (10) and (11), the averaged characteristic function becomes

ψLLR(jν) =
w∏

k=1

(−d2
k

2N0
(jν + a(dk))(jν + b(dk))

)−nr

(12)

=

(
w∏

k=1

(−d2
k

2N0

)−nr
)(

nd∏
k=1

([jν + a(δk)][jν + b(δk)])−nrλk

)
(13)

=

(
w∏

k=1

(−d2
k

2N0

)−nr
)⎛⎝ nd∏

k=−nd,k �=0

[jν + βk]−nrλ|k|

⎞
⎠ (14)

where the poles in the above product are defined by βk>0 = a(δk), βk<0 = b(δ−k). To allow derivation of pLLR(x), we

now compute the partial fractions expansion of ψLLR(jν):

ψLLR(jν) =
w∏

k=1

(−d2
k

2N0

)−nr nd∑
k=−nd,k �=0

nrλ|k|∑
i=1

αk,i

(jν + βk)i
(15)

The coefficients α�,j in (15) can be exactly evaluated from the following identity (series expansion in ε):

nrλ�−1∑
i=0

α�,nrλ�−iε
i + O(εnrλ�) =

nd∏
k=−nd,k �=�,k �=0

nrλ�−1∑
i=0

(−1)iCi
nrλ|k|+i−1

(βk − β�)nrλ|k|+i
εi + O(εnrλ�) (16)

where Ck
n = n!

k!(n−k)! .

From the simple properties a(δk)−1/2 = 1/2−b(δk) and ψLLR(jν−1/2) = ψLLR(−1/2−jν), we have α−k,i = (−1)iαk,i.

Hence, coefficients αk,i are only evaluated for k > 0. Expression (15) becomes

ψLLR(jν) =
w∏

k=1

(−d2
k

2N0

)−nr nd∑
k=1

nrλk∑
i=1

αk,i

(jν + a(δk))i
+

(−1)iαk,i

(jν + b(δk))i
(17)

Finally, we get the probability density function of LLR by Fourier transform

pLLR(x) =
1
2π

∫ +∞

−∞
ψLLR(jν)e−jνxdν (18)

=
1
2π

w∏
k=1

(−d2
k

2N0

)−nr nd∑
k=1

nrλk∑
i=1

αk,i

[
Ii(x, a(δk)) + (−1)iIi(x, b(δk))

]
(19)

and the function Ii(x, a(δk)) is defined by

Ii(x, a(δk)) =
(−x)i−1

(i − 1)!
2π sgn(a(δk))ea(δk)x

H(−sgn(a(δk))x) (20)

where sgn(x) is the sign function, and H(x) = Ix>0 is the Heaviside step function.
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The conditional pairwise error probability is Pw(c → c′) =
∫ 0

−∞ pLLR(x)dx which yields the closed form expression

Pw(c → c′) = Pw(Δ,Λ) =
w∏

k=1

(−d2
k

2N0

)−nr nd∑
k=1

nrλk∑
i=1

αk,i

a(δk)i
(21)

All sequences (d1, . . . , dw) corresponding to the same (Δ,Λ) yield the same pairwise error probability.

We have expressed the pairwise error probability between two given codewords c and c′ such that dH(c, c′) = w and

the transmission of c − c′ is characterized by (Δ,Λ). We now have to average this probability over all possible pairs

(c, c′). First, let us consider the averaged pairwise error probability Pw conditioned on dH(c, c′) = w:

Pw = Ec,c′|w [Pw(c → c′)] = Ec,c′|w [Pw(Δ,Λ)] (22)

Averaging over the pairs (c, c′) is equivalent to averaging over (Δ,Λ) thanks to the interleaver. Each pair (Δ,Λ)

is representative of w!/
∏nd

i=1 λi! equivalent pairs (Z,Z ′), where the w-dimensional Z and Z ′ vectors are the channel

inputs leading to X and X ′, respectively. As a pair (Z,Z ′) corresponds to a high number of pairs (c, c′), the complexity

of a numerical evaluation is dramatically reduced in practice by performing expectation over the sets Δ and Λ:

Pw = E{Δ,Λ}|w [Pw(Δ,Λ)] (23)

The frame error rate at the decoder output FERdec is upper bounded by the classical union bound

FERdec ≤ Ec

⎡
⎣ ∑

c′∈C,c′ �=c

P (c → c′)

⎤
⎦ (24)

The input-output transfer function of the convolutional code C is

T (I, Z) =
+∞∑

w=dHmin

+∞∑
i

ai,wIiZw and T (Z) = T (1, Z) =
+∞∑

w=dHmin

awZw (25)

where ai,w is the number of codewords with an output Hamming weight w and an input Hamming weight i. We can

now express the approximation of the maximum likelihood frame error rate and bit error rate of the ideally interleaved

BICM transmitted over a multiple antenna channnel:

FERdec ≤
+∞∑

w=dHmin

awPw (26)

where Pw is given in (23). Equivalently, we have

BERdec ≤
∑

j

+∞∑
w=dHmin

j

kcLc
aj,wPw (27)
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The union bound (UB) for convolutional codes is known to be tight on AWGN channels. Our experimental results

will show that the union bound provided by (23) and (26) is also tight on a MIMO ergodic channel.

IV. Genie method and performance

Consider the iterative detection and decoding process of the BICM transmitted on the multiple antenna channel

as illustrated in Fig. 1 and 2. Assume that extrinsic information associated to such a process is converging toward

a limit. The best limit corresponds to the ideal situation where the extrinsic information is perfectly reliable, i.e,

π(c�) = c� ∈ {0, 1}. This is called the genie situation. We will apply (21) to compute the genie performance at the

output of the detector. Since only one time period is considered, the temporal subscripts k will be omitted in the

following. The expression of the detector soft value, when the a priori is fed back by a genie, is easily obtained from

(2):

ξ(c�) =
e−‖y−zH‖2/2N0

e−‖y−zH‖2/2N0 + e−‖y−z̄�H‖2/2N0
(28)

where z̄� is produced by flipping the �th bit in the binary labeling of z. We are interested in evaluating the error

probability BERdet at the detector output when the genie is active. This error probability is directly related to the

decision making on ξ(c�). By conditioning on the channel state H and the transmitted QAM vector z, we can write

BERdet
H,z = E� [P (|ξ(c�) − c�| ≥ 0.5)] (29)

The symbol E�[.] denotes the mathematical expectation over the position � of the coded bit. Then, using (28) and (29),

we can express BERdet as a function of the distance d = d(z, z̄�), averaged over H, z and �:

BERdet = EH,z,�

[
PH(z → z̄�)

]
= Ez,�

[
Φ
(
d(z, z̄�)

)]
(30)

where Φ
(
d(z, z̄�

)
= EH

[
PH(z → z̄�)

]
. We can remark that the performance under genie condition at the detector

output, or equivalently at the decoder input, is the average probability of the |Ω|mnt equivalent BSKs with distance

d(z, z̄�) on a nt × nr MIMO channel. We can directly compute the pairwise error probability from (21) choosing

nd = w = 1, d1 = δ1 = d, λ1 = 1. Finally, we just have to identify the coefficients α1,i from

nr−1∑
i=0

α1,nr−i

εnr−i
+ O(1) =

nr−1∑
i=0

(−1)iCi
nr+i−1

(β−1 − β1)nr+iεnr−i
+ O(1) (31)
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using −β1β−1 = 2N0
d2 , we can write the closed form expression of Φ (d):

Φ (d) =
(

d2

2N0

)−nr nr−1∑
k=0

Ck
nr+k−1

(β1 − β−1)nr+kβnr−k
1

=
nr−1∑
k=0

Ck
nr+k−1

(
β1

β1 − β−1

)k (
β−1

β−1 − β1

)nr

(32)

=

⎛
⎝1 − 1√

1+8N0/d2

2

⎞
⎠

nr
nr−1∑
k=0

Ck
nr+k−1

⎛
⎝1 + 1√

1+8N0/d2

2

⎞
⎠

k

(33)

which is the result presented in [25, chap. 14].

Finally, the error probability at the detector output is given by

BERdet = Ez,�

[
Φ
(
d(z, z̄�)

)]
=

1
mnt|Ω|

∑
z∈Ω

mnt∑
l=1

Φ
(
d(z, z̄�)

)
= E{D} [Φ (d)] (34)

V. Multi-dimensional Mapping Optimization

We have presented an approximation of the BICM performance with ideal interleaving and ML decoding. This

approximation is a function of the signal to noise ratio, the number of receive antennas and the error-correcting code.

Moreover, it mainly depends on the set of distances D given by the binary mapping bit flipping and does not rely on

the constellation shape itself. This allows to evaluate the performance of any constellation, even the most unstructured.

The performance computation has been processed in the general case of nt-dimensional distances dk.

We will first calculate the figure of merit to be optimized for a given nt-dimensional modulation Ω thanks to its

associated distance set D. Then we will apply such an optimization to the classical QAMs and introduce the multi-

dimensional mapping concept.

A. Mapping figure of merit

Let us first extract the asymptotic coding gain from the genie performance at the detector output. The asymptotic

expression of BERdet when N0 → 0 is

BERdet
∼ Cnr

2nr−1

(2N0)nr

Fdet
Ω

(35)

where the figure of merit Fdet
Ω can be computed via [19]

1
Fdet

Ω

= E{D}
[
d−2nr

]
=

1
mnt|Ω|

∑
z∈Ω

mnt∑
�=1

1
d(z, z̄�)2nr

(36)

This figure of merit is equal to the one presented in [18] for nt = nr = 1. The asymptotic expression of BERdec when

N0 → 0 is

BERdec
N0→0 =

+∞∑
j=1

j

kcLc
aj,dHmin

CnrdHmin

2nrdHmin−1E{D}

[
dHmin∏
k=1

(
d2

k

2N0

)−nr
]

(37)
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Indeed, the error events with Hamming weight greater than dHmin have higher diversity and negligible contribution to

the performance for high signal to noise ratios. The distances in the sequence (d1, . . . , ddHmin
) are independent random

variables thanks to the ideal interleaver. The coding gain is a function of the mapping figure of the merit Fdec
Ω

1
Fdec

Ω

= E{D}

[
dHmin∏
k=1

d−2nr

k

]
=
(
E{D}

[
d−2nr

])dHmin (38)

which leads to Fdec
Ω =

(
Fdet

Ω

)dHmin . We notice that optimizing the mapping by maximizing the figure of merit derived

from the ML decoding criterion is equivalent to maximizing the figure of merit given by the genie method at the

detector output. We can compute the asymptotic gain of labeling Ω2 with respect to labeling Ω1 as follows:

GaindB ∼
1
nr

10 log10

(
Fdet

Ω2

Fdet
Ω1

)
(39)

The asymptotic gain only depends on the distance distribution of the equivalent BSKs. We can for example compare

two QAM mappings together or a QAM mapping with a PSK mapping.

B. Multi-dimensional labelings

When we consider classical mono-dimensional complex labelings, the asymptotic gain optimization is limited by

the m × nt distances of mono-dimensional complex vectors. Clearly, vectors with more dimensions will lead to higher

asymptotic gains. Let us define nmap as the number of antennas linked by the labeling.

When performing APP detection, the soft output is computed taking the whole set of transmitted vectors into

account. Thus, there is no complexity increase by using a multi-dimensional mapping instead of a mono-dimensional

mapping. However, a larger amount of memory is necessary to store the multi-dimensional labelings. When the spectral

efficiency is too high, e.g., 4×4 MIMO with 16-QAM input, the exhaustive detector is intractable, and a near-optimum

APP detector such as SISO sphere decoder can be used [26]. When using sub-optimum APP detectors such as SISO-

MMSE [27], the multiple antenna channel is considered as nt interfering 1 × nr SIMO channels, and an exhaustive

APP detector is processed on each sub-channel input. In this case, the multi-dimensional mappings cannot be used.

The nt × nr MIMO channel can be viewed as npart sub-channels equivalent to nt/npart × nr MIMO channels. We

can use a multi-dimensional mapping with nmap ≤ npart, compute an exhaustive detector on each sub-channel and a

sub-optimum low complexity detector to separate the npart sub-channels.
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C. Mapping optimization

The BICM performance depends on the set of BSK modulations associated to the mapping. For example, the Gray

mapping and its associated BSKs are represented in Fig. 3-a. The function Φ(d2) defined in (33) is a decreasing

function of d2, this induces that maximizing the BSK distances improves the constellation mapping. Asymptotically,

the mapping figure of merit is Fdet
Ω defined in (36). For example, the genie performance of 16-QAM with Gray labeling

and minimal Euclidean distance 2.0 is

BERdet
Gray =

24
32

Φ(4) +
8
32

Φ(36) (40)

The genie performance closed-form expression on MIMO nt×nr channels and the asymptotic gain expression (39) are

very useful when designing binary mappings because of the search procedure low complexity. We choose the mapping

at random or using an optimization algorithm such as the BSA [20][21]. A mapping is optimized for two parameters:

nr and nmap. Indeed, for a given labeling, the asymptotic gain is the same for all nt. We can numerically determine the

asymptotic gain probability distribution of a randomly selected binary mapping, taking the Gray mapping as reference.

On Fig. 4, for a 16-QAM constellation, we see the asymptotic gain distribution when nr = 1, 2, 4 and nmap = 1, 2, 4.

We also listed in Table I the mean, variance and maximum value of the asymptotic gain found by our search procedure.

We randomly selected a large number of 2m-QAM mappings, the search is not exhaustive. In the case of nr = 1 and

nmap = 1, the best mapping we found exhibits an asymptotic gain of 7.1 dB. When increasing the mapping number

of dimensions (nmap > 1), it is possible to increase the Euclidean distances of the embedded BSKs. This explains why

the statistical mean of asymptotic gain improves for nmap > 1.

We applied such optimizations to other spectral efficiency values and mapping number of dimensions, the best gains

we found with BSA are presented in Table II for 2m-QAM constellations. In the case of nr = 1 and nmap = 1, the

best mapping found by the BSA exhibits an asymptotic gain of 7.23 dB. This mapping is represented on Fig. 3-b.

Unfortunately, the BSA algorithm complexity grows strongly with the global spectral efficiency of the system, that is

why we are limited to mnmap < 10. For m = 1 with BSA algorithm, we find the same labelings as constructed in [16][17].

The number of receive antennas nr has an impact on the figure of merit. Thus, for a same mapping number of

dimensions nmap, different values of nr will lead to different optimized mappings. As an example, when nr tends to

infinity, the minimum distance in D will be dominant in the figure of merit expression, as on an AWGN channel, unlike



13

smaller nr values.

VI. Increasing the number of dimensions with Space Time precoding

Linear precoding can be used to increase the diversity of systems with a small number of antennas. The symbols of

s time periods are grouped together and spread over the transmit antennas and time periods without decreasing the

system rate. The linear precoder’s matrix S has snt rows and columns, where s is called the spreading factor of the

linear precoder. A BICM on an ergodic multiple antenna channel exhibits a diversity equal to dHminnr. We can increase

the observed diversity to sdHminnr using a snt × snt complex linear precoder. For example we may use cyclotomic

rotations [28][19][29]. If the linear precoder satisfies the norm conditions presented in [19] on an ergodic channel and

under a genie condition, maximum precoding gain is obtained and the channel may be seen as a 1×snr SIMO channel.

Multi-dimensional mappings designed for snr receive antennas may be used without any adaptation. The detection is

processed over s time periods. We can use at most a snt-dimensional mapping. As shown in section VIII, if s > 1, we

succeed in enhancing the coding gain via a mapping dimension increase at the cost of detector complexity increase.

VII. Convergence behaviour

We have designed multi-dimensional mappings having large potential gains. Unfortunately, we cannot use such good

mappings with a powerful error-correcting code because of convergence problems. Many studies have been made on

BICM convergence using exit charts [30] or transfer functions. Most of them conclude that the better the gain at the last

iteration, the worst at the first iteration. When considering a joint detection and decoding, the convergence is perfect if

the bit error rate at the SISO decoder input in the first iteration is under a given threshold, which corresponds to a SNR

value, commonly called waterfall point. The threshold depends on the error-correcting code, and in general, the better

the code, the lower the threshold. If the signal to noise ratio is higher than the waterfall point, the system converges

to an asymptote after a number of iterations decreasing with the noise level. At very high signal to noise ratio, the

mapping gain with respect to Gray mapping is always observed at the output of the error-correcting code. For different

mappings, the asymptotes are parallel, their slope is equal to the collected diversity lead by the minimum Hamming

distance of the code, the number of receive antennas and the linear precoding factor. If we are interested in a target bit

error rate equal to 10−5, we have to find a good compromise between the waterfall and the error floor, as in all iterative

processes. In the best case, performance converges to the asymptote exactly at the target error rate. This explains why,

when using mappings with high gains, we have to use ”bad” error-correcting codes to ensure a good convergence. We

illustrate this point on Fig. 5 which represents transfer functions (SNRdet
in ,SNRdet

out) of the detector using a Gaussian
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approximation with error probability matching [31] and different mappings. The transfer functions (SNRdec
in ,SNRdec

out)

of different convolutional codes are also drawn. The transfer functions of recursive systematic convolutional codes show

us that the better the code, the higher the slopes. The transfer function of the detector of a 2 × 2 MIMO channel

with SNR = 4.0 dB with QPSK input is also represented with different mappings. The higher the asymptotic gain, the

higher the right asymptote, but the lower the left asymptote. We deduce the convergence point searching for the fixed

point beginning from the bottom left of the graph. For a given signal to noise ratio, when using multi-dimensional

mappings with high asymptotic gain, we should use ”bad” error-correcting codes in order to achieve a fixed point close

to the right asymptotic value of the detector transfer function. This is equivalent to a perfect convergence to the limit

obtained by the genie method.

VIII. Simulation Results

We present some simulation results illustrating the signal to noise ratio gains produced by multi-dimensional labeling

under iterative joint detection and decoding. When considering convolutional codes, an exhaustive APP detector

computes the soft values delivered to a single SISO decoder: one iteration includes one detection and one forward-

backward processing on the convolutional code trellis [23]. When a turbo code is used, one iteration at the receiver

side includes one detection, one forward-backward processing on the first convolutional constituent code followed by

one forward-backward processing on the second constituent code. A more precise study of the scheduling as in [22] is

out of the scope of this paper.

First, Fig. 6 illustrates the error rate of a two-state (3, 2)8 recursive systematic convolutional code (RSC) on a 2× 2

MIMO channel with 16-QAM modulation. All situations presented in Fig. 6 correspond to nmap = 1. Gray mapping

is compared to optimized mapping. The latter shows more than 7.4 dB gain with respect to Gray mapping. The three

graphs in Fig. 6 show how the simulated error rate quickly converges to the ideal ML bound. The left graph depicts

the bit error rate at the decoder output, the middle graph depicts the frame error rate at the decoder output and the

right graph depicts the bit error rate at the MIMO detector output.

We now consider a target bit error rate equal to 10−5, usually taken as a reference for wireless data transmissions.

The bounds are not drawn anymore.

A convolutional code cascaded with multi-dimensional mappings is compared to a turbo code in Fig. 7. The channel is
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2× 2 MIMO ergodic with QPSK input. A two-state (3, 2)8 non recursive non systematic convolutional code (NRNSC)

is combined to mono-dimensional, bi-dimensional and four-dimensional mappings. A parallel turbo code based on

an RSC (7, 5)8 is cascaded with Gray mapping. Optimized mappings degrade the performance of the turbo code at

the first iteration which entails a dramatic signal to noise ratio loss in the waterfall region. Fig. 7 shows that a (3, 2)8

convolutional code with four-dimensional mapping (nmap = 4 = snt = 2×2) thanks to the linear precoder [19] performs

within 0.5 dB from a rate-1/2 Gray mapped turbo code. The price to pay is the increased detection complexity of

the time spreaded (s = 2) four-dimensional constellation. The optimized mapping with nmap = 2 and without linear

precoding exhibits excellent error rates above 10−3.

On Fig. 8, we present some simulation results on a 4×4 ergodic MIMO channel with QPSK input and NRNSC (3, 2)8.

We used mono-, bi- and four-dimensional optimized mappings. We observe that the 0.69 dB (respectively 4.98 dB)

expected gain between Gray and mono-dimensional (respectively bi-dimensional) optimized mappings is achieved.

When the four-dimensional mapping simulation converges, the asymptote performs lower than 10−5, this is why we

measure slightly less than the 7.26 dB expected gain at this BER value. In the latter configuration, the optimal case

when the simulation converges to the asymptote exactly at the target BER 10−5 is almost achieved. Finally, the system

performs as well as the more complex system including turbo code, without increasing the complexity of the detection

process. Indeed, in both cases, 20 iterations between the detector and decoder are necessary to achieve the convergence

limit and, in each receiver iteration, the turbo decoding is four times more complex than the 2-state convolutional code

decoding.

On Fig. 9, we present some simulation results on a 2×2 ergodic MIMO channel with 16-QAM input. When the BER

is 10−5, the gain with a mono-dimensional mapping is 7 dB. With a bi-dimensional mapping we achieve 9.1 dB, which

is less than the asymptotic 11.12 dB gain because convergence is not reached at 10−5. With high spectral efficiency

modulation and a simple NRNSC (3, 2)8, we achieve performance within 0.5 dB from the turbo code performance with

RSC (7, 5)8 constituent codes even on the 2 × 2 ergodic MIMO channel.

IX. Conclusions

The mapping optimization topic has been extensively discussed for BICM on single antenna channels. In this paper,

we have presented an extension of this optimization to multi-dimensional mappings.

We have first presented an exact expression of the pairwise error probability for a BICM over a MIMO channel with
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the ideal interleaving assumption. The pairwise error probability is useful to evaluate the BER and FER via a union

bound and draw an approximation of the ideal ML performance for moderate and high SNRs. A tangential sphere

bound could also be derived to tighten the bound for low SNRs. The union bound has been applied in this paper in the

context of mapping optimization. Other straightforward applications of the presented closed form performance could

be rotated QAMs or space-time coding. For mapping design, we derived from the union bound a figure of merit and

showed that it was equivalent to the one obtained with the more intuitive genie method.

In the case of high spectral efficiency modulations or a large number of transmit antennas, we achieve very high

mapping gains and perform close to turbo codes with a single convolutional code, without increasing the optimum or

near-optimum APP detector’s complexity.
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Mean Variance Max gain Max gain
(dB) (dB)

at random with BSA alg
nr = 1, nmap = 1 3.15 0.35 7.10 7.23
nr = 2, nmap = 1 2.40 0.29 7.27 7.42
nr = 4, nmap = 1 1.43 0.13 7.15 7.36
nr = 1, nmap = 2 6.75 0.02 7.48 10.68
nr = 2, nmap = 2 5.65 0.04 6.80 11.12
nr = 4, nmap = 2 3.59 0.04 5.01 10.98
nr = 1, nmap = 4 10.97 0.01 10.99 /
nr = 2, nmap = 4 10.67 0.01 10.71 /
nr = 4, nmap = 4 8.33 0.02 8.57 /

TABLE I

Statistics of 16-QAM optimized mappings

m = 1 m = 2 m = 4 m = 6
nr = 1, nmap = 1 0.00 1.25 7.23 12.62
nr = 1, nmap = 2 1.25 5.05 10.68 /
nr = 1, nmap = 3 3.55 6.52 / /
nr = 1, nmap = 4 5.05 / / /

nr = 2, nmap = 1 0.00 1.02 7.42 12.97
nr = 2, nmap = 2 1.02 5.02 11.12 /
nr = 2, nmap = 3 3.46 6.24 / /
nr = 2, nmap = 4 5.02 / / /

nr = 4, nmap = 1 0.00 0.69 7.36 12.81
nr = 4, nmap = 2 0.69 4.98 10.98 /
nr = 4, nmap = 3 3.35 6.16 / /
nr = 4, nmap = 4 4.98 7.26 / /

TABLE II

Best found asymptotic gains (in dB) with respect to Gray mapping for 2m
-QAM constellations and nmap dimensions
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Fig. 1. BICM on the MIMO channel.
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Fig. 2. Joint detection and decoding of a BICM.
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Fig. 3. Mappings of 16-QAM constellation.
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Fig. 4. Asymptotic gain distribution of random 16-QAM mapping with respect to Gray mapping.
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Fig. 6. Ergodic 2 × 2 MIMO channel, interleaver size is 10000 bits, 2-state (3, 2)8 convolutional code, 16-QAM modulation, 10 decoding
iterations. ML upper bound is denoted by ”ML UB” and Monte Carlo simulation is denoted by ”sim” in the captions.
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Fig. 7. Ergodic 2 × 2 MIMO channel, interleaver size is 9000 bits, rate-1/2 NRNSC and turbo code, QPSK modulation, 20 decoding
iterations.
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