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Abstract⎯This paper presents a design methodology and 
resulting schemes for Space-Time-Frequency (STF) coding and 
linear precoding of downlink Multiple Input Multiple Output 
(MIMO) Orthogonal Frequency Division Multiplexing (OFDM) 
modulated wireless systems, based on practical hypotheses. In 
particular, the design takes into account the fact that the receiver 
implements STF Minimum Mean Square Error (MMSE) 
detector instead of traditional optimal receivers, which are 
probably too complex to address high spectral efficiencies. The 
design also takes into account that long term channel statistics is 
easily available at the transmitter side, while the receiver 
reasonably has access to instantaneous channel knowledge. The 
resulting schemes combine STF coding or linear precoding with 
long-term eigenbeam selection with a specific power loading. 
Numerical evaluation on correlated flat fading channel shows 
that they outperform a state-of-the-art scheme combining spatial 
multiplexing and Space Time Orthogonal Block Coding 
(STOBC) in terms of Bit Error Rate (BER) and other 
intermediate design criteria. Their low decoding complexity and 
good performance make them relevant for practical 
implementation. 
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I. INTRODUCTION 
 
Achieving large spectral efficiencies is a crucial requirement 
for future wireless systems that are expected to provide high 
throughput everywhere, whereas the allocated bandwidth will 
not necessarily increase a lot. Multiple Input Multiple Output 
(MIMO) antenna techniques are very good candidates to 
achieve such spectral efficiencies. Indeed, in theory the 
MIMO channel capacity has been shown to increase linearly 
with the minimum of the number of transmit antennas and 
receive antennas of the system under favorable spatially 
uncorrelated channel conditions [1]. 
Many schemes have since been designed to exploit this 
capacity, using the transmit and receive spatial diversity. For 
instance, Space Time Orthogonal Block Codes (STOBC) 
[2][3] aim at increasing the transmission reliability while 
keeping the information rate constant, by fully exploiting the 
spatial transmit diversity. On the contrary, spatial multiplexing 
schemes [4] aim at increasing the information rate at a given 
transmit power. They have been shown to approach the 
expected theoretical channel capacity provided that they are 
combined with a powerful channel code and that the receiver 

uses a nearly optimal iterative decoder based on nearly 
optimal spatial detector and nearly optimal channel decoder 
[5]. The advantage of STOBC is that the associated optimal 
receiver is very simple but their limitation is that they are not 
well suited to address large spectral efficiencies, as their 
coding rate is low. The advantage of spatial multiplexing 
schemes is their ability to provide large spectral efficiencies; 
however the receiver complexity is quite large even though 
suboptimal iterative receivers based on suboptimal and simple 
space-time detectors have been shown to offer a good 
performance complexity trade off [6]; besides, they require at 
least the same number of receive antennas as transmit 
antennas, which may not be practical in a downlink where the 
spatial dimension of the terminal is a constraint. Thus, 
intermediate space-time coding solutions have been designed 
to provide compromises between reliability increase and data 
rate increase, while accommodating different numbers of 
transmit and receive antennas, e.g. [7]. However, a recurrent 
issue is that these codes are designed assuming -explicitly or 
not- the use of optimal Maximum Likelihood (ML) or A 
Posteriori Probability (APP) decoding algorithms whose 
complexity is exponential with the spectral efficiency or at 
least polynomial in the power six in the case of suboptimal 
Sphere Decoding based algorithm [6][8]. Such algorithms are 
therefore very complex for practical implementation. Simple 
linear detectors such as Minimum Mean Square Error 
(MMSE) detector -or a polynomial approximation of it- are 
probably more attractive to address large spectral efficiencies. 
Although it is likely that codes designed with optimal 
receivers perform also well when decoded with suboptimal 
receivers, there is no guarantee of it. Thus, it seems more 
appropriate to design the codes taking into account the 
detector characteristics. This is one objective of this paper.  
Moreover, as wireless systems generally implement low rate 
feedback or signaling channels, long term information on the 
physical channel is easily available at the transmitter side. 
Depending on the duplexing mode, the channel properties can 
even be estimated at the transmitter side without any dedicated 
feedback channel. Using long-term channel statistics to design 
space-time codes is not new, an example among others is [9], 
but the designs also implicitly assume optimal receivers.  
From these considerations, this paper proposes the design of 
Space-Time-Frequency (STF) block codes under the 



hypothesis that long-term channel knowledge is available at 
the transmitter side and taking into account that MMSE 
detector is implemented at the receiver side. This is done in 
the context of OFDM modulation so that each subcarrier of 
each OFDM symbol experiences flat fading. Besides, we 
focus on the downlink, which is characterized by high spatial 
correlation at the transmitter side and low correlation at the 
receiver side.  
The rest of the paper is organized as follows: chapter II 
provides the notations, system description and major 
hypotheses, chapter III presents the proposed design for linear 
STF precoding and STF coding, chapter IV provides 
numerical evaluation of the designed codes and chapter V 
draws conclusions. 
 

II. NOTATIONS, SYSTEM DESCRIPTION AND HYPOTHESES 
 
In the rest of the paper, vectors and matrices are represented 
with bold letters and scalars with italic letters. t represents the 
transpose, * the conjugate and H the hermitian transpose. For 
any matrix M, MR =Re(M) and MI =Im(M). Tr is the trace 
operator. Nt and Nr are respectively the number of transmit and 
receive antennas. 

A. Transmitter 
 
We consider the design of STF block codes spanning a time 
dimension of Ntime OFDM symbols and a frequency dimension 
of Nfreq subcarriers. Thanks to OFDM modulation, the time 
and frequency dimensions are completely equivalent in the 
sense that they ideally remain orthogonal during a 
transmission. Therefore we do not make any distinction 
between these in the sequel and denote N=Ntime*Nfreq the time 
and/or frequency dimensions spanned by the code. When 
Nfreq=1, the code is a Space-Time (ST) code and when Ntime=1 
the code is a Space-Frequency (SF) code. We refer to the 
general STF denomination in the rest of the paper. 
The STF block encoder encodes input Q*1 vectors S made of 
Q normalized modulated complex symbols. True STF codes 
will separately encode the real part and the imaginary part of 
S, while linear STF precoders will perform a matrix 
multiplication of the complex vector. The STF codeword can 
be expressed as EcSR+FcSI, where the complex NtN*Q 
matrices Ec and Fc fully describe the STF code. This writing is 
equivalent to CcS+DcS* where Cc and Dc are complex matrices 
encoding respectively S and S*. In the case of linear STF 
precoding, the matrix Dc is set to 0 and the linear STF 
precoder codeword becomes CcS.  

B. MIMO OFDM channel 
 
Thanks to OFDM modulation, for each pair of transmit and 
receive antenna, each subcarrier experiences flat fading where 
the related channel coefficient is equal to the channel 
frequency response at the subcarrier frequency, given by the 

corresponding sample of the FFT of the channel impulse 
response between the pair of antennas. 
The MIMO channel impulse response is given by: 

( ) ( ) ( ) (1) ∑
=

−=
Np

p
pp tt

1
, ττδτ HH

where t represents the time, τ  the delay, Np is the number of 
multipaths components (also called taps), Hp(t) is a Nr*Nt 
complex random matrix representing the MIMO response of 
the pth tap at time t. In general Hp(t) can be modeled as: 

*H )()( ppppp tt BGAH α=  (2) 

where αp is the normalized tap amplitude, Gp(t) is a 
normalized i.i.d. complex centered gaussian distributed 
matrix, i.e. the distribution of each element of Gp(t) is 
( )( ))1,0()1,0(21 jNN + , Ap and BBp are square roots of the 
spatial correlation matrices for tap p respectively at the 
receiver side and at the transmitter side, denoted RRx,p and 
RTx,p: Ap

HAp=RRx,p, Bp
HBpB =RTx,p. The writing (2) confers a so-

called kronecker structure to the channel matrix Hp [10], 
which is generally valid, except for the Line Of Sight (LOS) 
component and for the so-called keyhole effect [11]. 
In this paper, we choose to focus on the downlink and make 
the assumption that the receiver is surrounded by many 
scatterers covering a large angular spread, so that the receive 
spatial correlation is close to identity for each tap. In this case 
we show that the correlation matrix of the frequency response 
of the channel is: 
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where H’(t,f) is the vector made of the column vectors of the 
Nr*Nt frequency response matrix H(t,f) stacked on top of each 
other. This shows that the flat fading channel of each 
subcarrier also has a kronecker structure. We call RTx the 
resulting transmit correlation matrix and B its square root: 
BHB =  RTx (4) 
Thus, the channel matrix is modelled as: 

*),(),( BGH ftft =  (5) 

where G(t,f) is a normalized i.i.d. complex centered gaussian 
distributed matrix. In the rest of the document, the dependency 
of H and G on t and f is removed to simplify the notations and 
because the channel is assumed to be stationary (in time and 
frequency) on the range of a STF codeword. Thus ,the channel 
seen by a STF codeword of length N is: 
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C. MMSE receiver 
 



We assume that the receiver has instantaneous channel 
knowledge, which is commonly implemented by appropriate 
pilot symbols. 
In the case of linear STF precoding, the received signal can be 
expressed as: 

''' νSCHR c +=  (7) 

, where R’ is the NrN*1 received complex vector, made of N 
vectors of size Nr*1 stacked on top of each other, each 
corresponding to a time and/or frequency index i=1,..,N. 
Similarly ν’ is a NrN*1 vector of i.i.d. AWGN complex 
samples of variance σ2.  
The Minimum Mean Square Error (MMSE) estimate S  of S is 
given by: 
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In the case of STF coding, we prefer the following writing 
involving only real matrices: 
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The MMSE estimate of S~  is: 
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III. CODE DESIGN  
 
The design below is detailed in the case of linear STF 
precoding for the sake of simplicity, but the results are also 
provided for STF coding. 

A. Linear STF precoder design 
 
Starting from (8), the residual MSE after detection is found as: 

(( )12HH2TrMSE −
+= QICH'H'C cc σσ  (11) 

We now seek the code such that: 
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, where P is the average total transmit power constraint. The 
problem lies in expressing ( )MSEHE , which is the expectation 
of the MSE with respect to the fast fading process. To do this, 
we first assume that σ2 is small (the SNR is large), which is a 
reasonable hypothesis, and hence approximate the MSE with 
the first order term in σ2: 

( )( )1HH2TrMSE −
≈ cc CH'H'Cσ  (13) 

When the time and/or frequency dimension is 1 (N=1), H’ 
reduces to H according to (6), and we observe that the 
matrix has an inverse 
central complex Wishart distribution with N

( ) ( 1*HH1HH −−
= cccc CGBGBCCH'H'C t )

r degrees of 
freedom and associated covariance matrix 

cccc , denoted ICWCRCCBBCΣ *H*H
Tx

t == Nt(Σ,Nr). In this case, 
it has been shown that [12]: 
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, which is of course still valid when we further apply the trace 
operator. This result has been shown to be valid in the case of 
N=1, but the following approximation still holds when N > 1 
and Nr ≤ Nt, provided that the code rate R = Q/NrN  is smaller 
than 1 (this ratio always needs to be smaller than 1 for the 
receiver to be feasible): 
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, where α is constant proportionality factor that does not 
depend on the choice of Cc but only on the dimensions of the 
problem. Therefore, using the approximations (13) and (15), 
the problem (12) can be formulated as finding Cc such that 
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We use the following Singular Value Decomposition (SVD) 
of Cc: 
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where P is a unitary NtN* NtN matrix, V is a unitary Q*Q 
matrix and Γ is a positive diagonal Q*Q matrix. We use the 
following Eigenvalue Decompostion (EVD) of : *

TxR
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, where the compact writing with U’ and Λ’ authorizes that the 
eigenvalues in ΛI ⊗N  are reordered arbitrarily and the 
eigenvectors (column vectors) in  are reordered 
accordingly. 

UI ⊗N

The solution Cc to (16) is found as: 
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Λ’Q  is a diagonal matrix made of the Q largest values among 
the NtN diagonal values of Λ’ and the first Q column vectors 
in U’ are those associated with Λ’Q  in (19) (the remaining NtN 
– Q vectors of U’ have no importance as they are not used). 
Equivalently, Cc can be written as: 

( ) H4/12/1 ''''Tr VΛUΛCc
−−= QQP  (21) 

, where U’’ is a NtN * Q matrix made of the first Q columns of 
U’. 
In (20), U’ and Λ’Q are fully defined, V is only required to be 
unitary. However, whereas any unitary matrix V gives the 



same average value of the MSE with respect to the fast fading 
process, the choice of V influences the resulting Bit Error Rate 
(BER). Indeed, the choice of V influences the residual SINR 
per dimension of the estimate S  after MMSE equalization, 
and hence the error probability per dimension. V can therefore 
be chosen so as to maximize the minimum average SINR per 
dimension, which can be formulated as the following minimax 
problem: 
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, where SINRi is the SINR of the ith component of , which 
we express in the following. The estimated signal S  after 
encoding with the code (20), transmission over the MIMO 
channel and  MMSE equalization can be written as: 
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, where ( )GGf H  and  are matrix functions of 
respectively G

( )Gg
HG and G, which is the centered normal i.i.d. 

matrix introduced in (5). We have the following relationship: 
( ) ( ) ( )GgGgGGf HH = . The SINR of the ith component is then 

given by: 
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, where Vi is the ith line of V. The problem (22) becomes: 
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Neglecting second order terms (in (σ2)2) that appear in the 
Taylor series expansion of SINRi since σ2 is small, it can be 
shown that the resulting term  at the 
denominator has a central chi-square distribution. Besides, it 
can be shown that the expectation of the inverse of a chi-
square distributed variable is proportional to the inverse of the 
expectation of the chi-square distributed variable and therefore 
that (25) can be reformulated as: 
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This problem is a non-linear optimization problem: 
- it can be solved numerically recursively and converges to 
different matrices V for different initial matrices but at the 
convergence all cost functions are equal, 

- the cost function ( ) { QiiQi ,...,1,' H2/1 ∈− VΛV } has all its values 
equal at the convergence and they are equal to those obtained 
with Hadamard and Discrete Fourier Transform (DFT) 
matrices, which are therefore local optima. 
Thus, V can be chosen as a DFT matrix or a Hadamard matrix 
when Q is a power of 2.  

B. STF code design 
 
Similar reasoning, which we will not detail here, leads to the 
solution for STF coding. We first define B~  as: 
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where B is defined in (4).  
The STF code is found as: 
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where P is the average total transmit power, Q2
~Λ  is a diagonal 

matrix made of the 2Q largest eigenvalues of BB ~~ t  and U~  is 
made of the related 2Q eigenvectors. V is an orthogonal 
matrix whose definition can be refined as in the previous 
chapter. In particular, Hadamard matrices when Q is a power 
of 2, or matrices obtained from DFT matrices are appropriate 
solutions. 
 

IV. NUMERICAL RESULTS 
 
The codes designed above are evaluated using Monte Carlo 
simulation on a narrowband flat fading channel taking into 
account the model of chapter II.B. The parameters are set as 
follows: Nt=4, Nr=2, N=2, Q=4. The input complex symbols 
are QPSK modulated. 
The transmit correlation is computed from geometric path 
distribution. In the selected simulation scenario, the 
elementary paths leaving the transmitter have a laplacian 
distribution with an average angle of departure of 45° with 
respect to the bore sight and a standard deviation of 5°, which 
roughly gives the position and dimension of the main scatterer 
seen by the transmitter. The spacing between the antenna 
elements is half wavelength. These parameters are typical of 
an outdoor environment and lead to a rather high spatial 
correlation at the transmitter. The receiver has no spatial 
correlation. 
The abscissa of the simulation curves is the average Eb/No, 
where Eb is the total transmitted energy per information bit 
and No is the noise power spectral density (No = 2σ2) at each 
receive antenna. 
In Fig. 1 to 3, 3 codes are evaluated: the linear STF precoding 
and STF coding as described above, and a code made of the 
combination of spatial multiplexing with Alamouti’s scheme 
[2]. This code consists in transmitting at time instant 1: S1, S2, 
S3, S4 on antennas 1 to 4, and at time instant 2: -S*

2, S*
1, -S*

4, 



S*
3 on antennas 1 to 4. This code is known as providing full 

transmit diversity with a good coding gain. As it is optimally 
decoded with a MMSE receiver, it is not here as an example of 
code designed assuming an optimal receiver and decoded with 
a suboptimal decoder, but as an example of a very good code. 
Fig. 1 shows the residual MSE vs. the Eb/No. The designed 
codes indeed provide a minimum residual MSE. This 
strengthens the approximation (15). 
Fig. 2 shows the average minimum SINR over all Q 
dimensions after MMSE detection. The designed codes indeed 
provide the maximum minimum SINR, which is consistent 
with the design criterion (22) and somehow validates the 
approximation made in (26). 
Fig. 3 shows the average BER. It is limited between 10-2 and 
10-3 because this is sufficient to draw conclusions, all the more 
as channel coding is generally implemented to reduce the 
residual BER. The gain brought by the designed codes is 
significant (almost 4dB at a BER of 10-2). According to the 
curves slopes, full transmit diversity is achieved. According to 
the curves relative positions, a good antenna (coding) gain is 
achieved. It is interesting to notice that, with the proposed 
design, STF coding does not bring any gain with respect to 
linear STF precoding. 
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Figure 1: Average residual MSE after MMSE detection. 
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Figure 2: Average of min{SINRi,i=1,..,Q} after MMSE detection. 
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Figure 3: Average BER after MMSE detection. 

 

V. CONCLUSIONS  
 
This paper presents STF coding and linear precoding schemes 
for downlink MIMO OFDM systems, designed taking into 
account the complexity constraint of the receiver and making 
rather weak channel knowledge hypotheses. In particular, the 
receiver is assumed to implement a MMSE STF detector 
having lower complexity than traditionally assumed optimal 
detectors; besides, long-term channel knowledge is available 
at the transmitter while instantaneous channel knowledge is 
available at the receiver. The resulting schemes have been 
shown to perform well on spatially correlated channel. They 
are probably good candidates for practical implementation 
thanks to their low complexity and good performance. 
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